

Bridge method for studying the spectra of currentf uctuations in tungsten flaments at the frequency range 1,5∙10–5–5∙10–1 Hz
https://doi.org/10.32446/0368-1025it.2021-5-18-25
Abstract
The problem of the absence of methods for measuring low-frequency fluctuation processes at high temperatures is considered. An original bridge method is proposed for measuring the spectra of low-frequency current fluctuations in tungsten filaments of electric lamps in a controlled temperature range of 300–2700 K. Application of the bridge measurement scheme allows us to reduce the influence of degradation processes in the filament and the power source's own noise on the measurement results by several orders of magnitude. Spectral analysis of low frequency current fluctuations is performed at the frequency range 1.5∙10–5–5∙10–1 Hz using an automated setup based on a personal computer under the control of specially developed software.
About the Authors
Y. A. ZakharovRussian Federation
Yuriy A. Zakharov
Ufa
S. S. Gots
Russian Federation
Sergey S. Gots
Ufa
R. Z. Bakhtizin
Russian Federation
Rauf Z. Bakhtizin
Ufa
References
1. Van der Ziel A., Noise in measurements, John Wiley & Sons, New York, 1976, 228 p.
2. Zakharov Yu. A., Gots S. S., Bakhtizin R. Z., Radiophysics and Quantum Electronics, 2020, vol. 63, no. 3, pp. 227–240. https://doi.org/10.1007/s11141-021-10048-0
3. Stepanov A. V., Direct measurement of non equilibrium noise, Proceedings of the scientifi c and methodological seminar reports “Fluctuation and degradation processes in semiconductor devices”, Moscow, Russia, November 28–30, 2011, Moscow, Popov MSTSREEC, MPEI, 2012, pp. 49–55. (In. Russ.)
4. Gots S. S. Osnovy opisanija i komp’juternyh raschetov harakteristik sluchajnyh processov v statisticheskoj radiofi zike [Fundamentals of description and computer calculations of characteristics of random processes in statistical radiophysics], Ufa, Еditorial and publishing department of Bashkir state university, 2005, 168 p. (In. Russ.)
5. Gorlov M. I., Smirnov D. Y., Zolotareva E. A., Russian microelectronics, 2011, vol. 40, no. 1, pp. 47–51. https://doi.org/10.1134/S1063739710061010
6. Zakharov Yu. A., Gots S. S., Bakhtizin R. Z., Measurement Techniques, 2019, vol. 62, no. 4, pp. 358–364. https://doi.org/10.1007/s11018-019-01630-0
7. Neri B., Ciofi C., Dattilo V., IEEE Transactions on Electron Devices, 1997, vol. 44, no. 9, pp. 1454–1459. https://doi.org/10.1109/16.622601
8. Zhigalskii G. P., Physics-Uspekhi (Advances in Physical Sciences), 2003, vol. 46, no. 5, pp. 449–471. https://doi.org/10.1070/PU2003v046n05ABEH001244
9. Bakhtizin R. Z., Gots S. S., Ustanovka dlja issledovanija nizkochastotnogo shuma avtojemissionnyh katodov [Apparatus for measuring low-frequency noise of fi eld-emission cathodes], Instruments and Experimental Techniques, 1981, vol. 24, no. 3. pp. 711–713. (In. Russ.)
10. Wittrock S., Tsunegi S., Yakushiji K., Fukushima A., Kubota H., Bortolotti P., Ebels U., Yuasa S., Cibiel G., Galliou S., Rubiola E., Cros V., Phys. Rev. B, 2019, vol. 99, no. 23, 235135. https://doi.org/10.1103/PhysRevB.99.235135
11. Aliev F. G., Cascales J. P., Hallal A., Chshiev M., Andrieu S., Phys. Rev. Lett., 2014, vol. 112, no. 21, 216801. https://doi.org/10.1103/PhysRevLett.112.216801
12. Chiteme C., McLachlan D. S., Balberg I., Phys. Rev. B, 2003, vol. 67, no. 2, 024207. https://doi.org/10.1103/PhysRevB.67.024207
13. Guerrero R., Solignac A., Pannetier-Lecoeur M., Apertet Y., Lecoeur P., Fermon C., Phys. Rev. B, 2010, vol. 82, no. 3, 035102. https://doi.org/10.1103/PhysRevB.82.035102
14. Baskakov S. I. Radiotehnicheskie cepi i signaly [Radio engineering circuits and signals], Moscow, Higher school publ., 2000, 464 p. (In. Russ.)
15. Ghots S. S., Bakhtizin R. Z., Applied Surface Science, 2003, vol. 215, no. 1–4, pp. 105–112. https://doi.org/10.1016/S0169-4332(03)00314-3
16. Timashev S. F., Polyakov Yu. S., Lakeev S. G., Misurkin P. I., Danilov A. I., Russian Journal of Physical Chemistry A. 2010. vol. 84, no. 10, pp. 1807–1825. https://doi.org/10.1134/S0036024410100183
17. Périgois C., Belczynski C., Bulik T., Regimbau T., Phys. Rev. D, 2021, vol. 103, no. 4, 043002. https://doi.org/10.1103/PhysRevD.103.043002
18. Polnarev A. G., Roxburgh I. W., Baskaran D., Phys. Rev. D, 2009, vol. 79, no. 8, 082001. https://doi.org/10.1103/PhysRevD.79.082001
19. Edlund J. A., Tinto M., Królak A., Nelemans G., Phys. Rev. D, 2005, vol. 71, no. 12, 122003. https://doi.org/10.1103/PhysRevD.71.122003
Review
For citations:
Zakharov Y.A., Gots S.S., Bakhtizin R.Z. Bridge method for studying the spectra of currentf uctuations in tungsten flaments at the frequency range 1,5∙10–5–5∙10–1 Hz. Izmeritel`naya Tekhnika. 2021;(5):18-25. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-5-18-25