

Intelligent information and measurement system for measuring the parameters of oxide coatings in the process of microarc oxidation
https://doi.org/10.32446/0368-1025it.2023-6-46-55
Abstract
The process of creating protective coatings with specified properties on products made of light metals and alloys (aluminum, magnesium, titanium) by microarc oxidation is characterized by an urgent problem of increasing controllability and efficiency. Its solution is associated with an increase in the accuracy of measurements of technological parameters and parameters of oxide coatings, an increase in the speed of the measuring instruments used and automation of measurement procedures. The authors propose the structure of an intelligent information and measurement system for measuring the parameters of microarc oxide coatings, which contains unique hardware, software and information support.
At the same time, the process current source is an integral and one of the most important parts of the hardware, since it sets such technological modes as the strength and shape of the current (sinusoidal or pulse signals are possible), on which the parameters of the formed coatings largely depend. The developed process current source is characterized by an increased efficiency and provides a full range of regulation of the parameters of the energy effect on the test sample on which the coating is formed. This is achieved through the use of original circuit solutions in the field of pulsed power electronics, as well as modern electronic component base. The system allows for high-precision measurements of technological parameters and properties of the resulting coatings, which can be used for automated monitoring of the microarc oxidation process, as well as for scientific research. The presence of an intelligent application and a knowledge bank in the system makes it possible to intelligently select the optimal technological parameters of microarc processing, as well as to carry out automated controlled synthesis of microarc oxide coatings with specified properties.
About the Authors
E. А. PecherskayaRussian Federation
Ekaterina A. Pecherskaya
Penza
P. E. Golubkov
Russian Federation
Pavel E. Golubkov
Penza
M. D. Novichkov
Russian Federation
Maksim D. Novichkov
Penza
S. A. Gurin
Russian Federation
Sergey A. Gurin
Penza
A. M. Metal'nikov
Russian Federation
Alexey M. Metal'nikov
Penza
References
1. Shirani A., Joy T., Rogov A., et al. Surface & Coatings Technology, 2020, vol. 397, 126016. https://doi.org/10.1016/j.surfcoat.2020.126016
2. Yang C., Cai H., Cui S., et al. Surface & Coatings Technology, 2022, vol. 433, 128148. https://doi.org/10.1016/j.surfcoat.2022.128148
3. Fattah-alhosseini A., Chaharmahali R., Babaei K., Nouri M., Keshavarz M. K., Kaseem M. Journal of Magnesium and Alloys, 2022, vol. 10, pp. 2354–2383. https://doi.org/10.1016/j.jma.2022.09.002
4. Fattah-alhosseini A., Molaei M., Nouri M., Babaei K. Journal of Magnesium and Alloys, 2022, vol. 10, pp. 81–96. https://doi.org/10.1016/j.jma.2021.05.020
5. Zolotarjovs A., Smits K., Laganovska K., et al. Radiation Measurements, 2019, vol. 124, pp. 29–34. https://doi.org/10.1016/j.radmeas.2019.02.020
6. Wu H., Jiang J., Meletis E. I. Applied Surface Science, 2020, vol. 506, 144858. https://doi.org/10.1016/j.apsusc.2019.144858
7. Kaseem M., Zehra T., Dikici B., Dafali A., Yang H. W., Ko Y. G. Journal of Magnesium and Alloys, 2022, vol. 10, pp. 1311–1325. https://doi.org/10.1016/j.jma.2021.08.028
8. Jangde A., Kumar S., Blawert C. Journal of Magnesium and Alloys, 2020, vol. 8, pp. 692–715. https://doi.org/10.1016/j.jma.2020.05.002
9. Wang X., Zhang F. Transactions of Nonferrous Metals Society of China, 2022, vol. 32, no. 7, pp. 2243–2252. https://doi.org/10.1016/S1003-6326(22)65944-2
10. Pechenkina M. A., Rakov D. L. Computer-aided design in mechanical engineering, 2018, no. 6, pp. 120–122 (In Russ.) https://elibrary.ru/ytrqjn
11. A. V. Kozlov, Candidate’s dissertation of Technical Sciences (Orlovskij gosudarstvennyj agrarnyj universitet, Orel, 2014) https://elibrary.ru/svavnb
12. A. M. Volkhin, Candidate’s dissertation of Technical Sciences (Rossijskij gosudarstvennyj universitet nefti i gaza imeni I. M. Gubkina, Moscow, 2013) https://elibrary.ru/qxzkzx
13. I. S. Ponomarev, Extented abstract of candidate’s dissertation of Technical Sciences (Permskij nacional’nyj issledovatel’skij politekhnicheskij universitet, Yekaterinburg, 2016) https://elibrary.ru/zqbgjr
14. Bolshenko A. V., Pavlenko A. V., Puzin V. S., Panenko I. N. Power Supplies for Microarc Oxidation Devices, Life Science Journal, 2014, vol. 11(1s), pp. 263–268. https://www.elibrary.ru/uzqplr
15. Mamaev A. I., Mamaeva V. A., Borikov V. N., Dorofeeva T. I. Formation of nanostructured nonmetallic inorganic coatings by localization of high-energy flows at the phase interface. Tomsk, Publishing House Tomsk University, 2010, 360 p. (In Russ.)
16. V. N. Borikov, Extented abstract of Doctoral dissertation of Technical Sciences (TPU, Tomsk, 2012) https://www.elibrary.ru/qhzjqv
17. Parfenov E. V., Farrakhov R. G., Mukaeva V. R. et al. Bulletin of the Ufa State Aviation Technical University, 2016, vol. 20, no. 4(74), pp. 23–31 (In Russ.) https://www.elibrary.ru/xhniux
18. Parfenov E. V., Yerokhin A. Methodology of data acquisition and signal processing for frequency response evaluation during plasma electrolytic surface treatments in Process Control: Problems, Techniques and Applications, Nova Science Publishers, Inc., 2012, ch. 3, pp. 63–96.
19. Fatkullin A. R., Parfenov E. V. Bulletin of the Ufa State Aviation Technical University, 2016, vol. 20, no. 4(74), pp. 38–44 (In Russ.) https://www.elibrary.ru/xhnivr
20. Rogov A. B., Huang Y., Shore D., Matthews A., Yerokhin A. Ceramics International, 2021, vol. 47(24), pp. 34137– 34158. https://doi.org/10.1016/j.ceramint.2021.08.324
21. Golubkov P., Pecherskaya E., Karpanin O., Safronov M., Zinchenko T., Artamonov D. 26th Conference of Open Innovations Association (FRUCT), Yaroslavl, Russia, April 23–24, 2020, Helsinki, Finland, IEEE, 2020, pp. 91–101. https://doi.org/10.23919/FRUCT48808.2020.9087360
22. Golubkov P. E., Pecherskaya E. A., Karpanin O. V., Mel’nikov O. A., Pecherskiy A. V., Timokhina O. A. Journal of Physics: Conference Series, 2021, vol. 1889, no. 52041, pp. 1–5. https://doi.org/10.1088/1742-6596/1889/5/052041
23. Golubkov P. E., Martynov A. V., Pecherskaya E. A. Collection of articles of the VI All-Russian interuniversity scientific and practical conference “Information technologies in science and education. Problems and Prospects” (VMNPK-2018), Penza, Russia, March 14, 2018, Penza, PSU Publishing House, 2018, pp. 245–248 (In Russ.) https://www.elibrary.ru/xvrkeh
Review
For citations:
Pecherskaya E.А., Golubkov P.E., Novichkov M.D., Gurin S.A., Metal'nikov A.M. Intelligent information and measurement system for measuring the parameters of oxide coatings in the process of microarc oxidation. Izmeritel`naya Tekhnika. 2023;(6):46-55. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-6-46-55