Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Multispectral sampling sequence formation in an analog optical link: the possibility of automatization using digital feedback

https://doi.org/10.32446/0368-1025it.2023-6-34-39

Abstract

Application of high-stable pulsed mode-locked lasers as a sources of sampling signal with low jitter in wide bandwidth photonic analogue to digital converters is considered. It is noted that for signals with the bandwidth up to 2 GHz the realization of pulsed multispectral sequence is highly promising method of sampling rate increasing. It is noted that high sensitivity of such systems to temperature changes and mechanical disturbances causes the increase of the sampling sequence jitter, errors in setting the light signal delays in the spectral channels causes violation of the pulses equidistance. Such a degradation of sampling signal quality leads to reduction of analogue to digital conversion precision. The method of process automatization using digital feedback and motorized delay lines is proposed for multispectral sequence pulses equidistance improvement. The results of mathematical modeling and experimental realization of the method in 3-channel multispectral sequence generation system with tripling of the sampling rate of the source mode-locked laser are represented in the article. Given method can find application in optical sampling-based analogue-to-digital microwave photonic systems of different purposes.

About the Authors

D. S. Zemtsov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Skolkovo Institute of Science and Technology
Russian Federation

Daniil S. Zemtsov

Moscow



Е. Yu. Zlokazov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Еvgenii Yu. Zlokazov

Moscow



V. A. Nebavskiy
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Vsevolod A. Nebavskiy

Moscow



R. S. Starikov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Rostislav S. Starikov

Moscow 



I. G. Khafizov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Ilshat G. Khafizov

Moscow 



References

1. Valley G. C. Optics Express, 2007, vol. 15, no. 5, pp. 1995– 1982. https://doi.org/10.1364/OE.15.001955

2. McKinney J. D., Williams K. J. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 8, pp. 2093–2099. https://doi.org/10.1109/TMTT.2009.2025468

3. Starikov R. Journal Achievements of Modern Radioelectronics, 2015, no. 2, pp. 3–39 (In Russ.) https://elibrary.ru/tuiiqx

4. Starikov R. S. Proceedings of SPIE, 2016, vol. 10176, 1017618. https://doi.org/10.1117/12.2268144

5. Esman D. J., Wiberg A. O. J., Alic N., Radic S. Journal of Lightwave Technology, 2015, vol. 33, pp. 2256–2262. https://doi.org/10.1109/JLT.2015.2408551

6. Cruz P. E. D., Alves T. M. F., Cartaxo A. V. T. Optics and Photonics Journal, 2019, vol. 9, no. 12, pp. 219–234. https://doi.org/10.4236/opj.2019.912018

7. Xu Y., Li S., Xue X., et al. IEEE Photonics Journal, 2019, vol. 11, no. 4, pp. 1–9. https://doi.org /10.1109/JPHOT.2019.2926399

8. Dadashev M. S., Zemcov D. S., Zlokazov E. Ju., et al. Journal of Communications Technology and Electronics, vol. 68, no. 2, pp. 185–191. https://doi.org/10.1134/S1064226923020031

9. Mehta N.et al. 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2020, pp. 1–2. https://doi.org/10.1109/VLSITechnology18217.2020.9265101

10. Li Z., Wang X., Zhang Y., Zhang L. Optics Express, 2022, vol. 30, no. 16, pp. 29611–29620. https://doi.org/10.3390/photonics9110831

11. Lyu W., Li Z., Zhang L. et al. Photonics, 2022, vol. 9, no. 11, 831. https://doi.org/10.3390/photonics9110831

12. Frankel M., Kang J., Esman R. Electronics Letters, 1997, vol. 33, no. 25, pp. 2096–2097. https://doi.org/10.1049/el:1997144

13. Kang J., Esman R. Electronics Letters, 1999, vol. 35, no. 1, pp. 60–61. https://doi.org/10.1049/el:19990041

14. Citrin D. S. IEEE Transactions on Communications, 2022, vol. 70, no. 1, pp. 445–454. https://doi.org/10.1109/TCOMM.2021.3116711

15. Fok M. P., Lee K. L. IEEE Photonics Technology Letters, 2004, vol. 16, no. 3, pp. 876–878. https://doi.org/10.1109/LPT.2004.823696

16. Wu G. L., Li S. Q., Li X. W., Chen J. P. Optics Express, 2010, vol. 18, no. 20, pp. 21162–21168. https://doi.org/10.1364/OE.18.021162

17. Gevorgyan H., Al Qubaisi K., Dahlem M. S., Khilo A. Optics Express, 2016, vol. 24, no. 12, pp. 13489–13499. https://doi.org/10.1364/OE.24.013489

18. Yang G., Zou W., Yu L., Chen J. Optics Letters, 2018, vol. 43, no. 15, pp. 3530–3533. https://doi.org/10.1364/OL.43.003530

19. Nelder J. A., Mead R. Computer Journal, 1965, vol. 7, no. 4, pp. 308–313. https://doi.org/10.1093/comjnl/8.1.27


Review

For citations:


Zemtsov D.S., Zlokazov Е.Yu., Nebavskiy V.A., Starikov R.S., Khafizov I.G. Multispectral sampling sequence formation in an analog optical link: the possibility of automatization using digital feedback. Izmeritel`naya Tekhnika. 2023;(6):34-39. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-6-34-39

Views: 258


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)