Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Measurement of strength and microstructural characteristics of epoxypolimers cured by thermal and microwave methods

https://doi.org/10.32446/0368-1025it.2020-12-35-41

Abstract

In this work, we studied the strength parameters, fractographic patterns, and the microstructure of epoxy polymer samples cured both by thermal and microwave methods at various temperature, power, and time conditions. The dependence of strength on curing conditions is determined using the tensile test method. To achieve maximum strength for both curing methods optimum conditions were found. A comparative fractographic analysis of microwave and thermal cured samples fractures having similar strength characteristics was carried out by electron microscopy. It was found that microwave field curing leads to the globules size increase in the cured epoxy polymer and an increase in the number of nanopores in the material. Plastic samples local deformation is also more pronounced during fracture, which leads to a greater difference of the main and secondary cracks propagation velocities ratio. The relationship between the studied samples optical density in the wavelength range from 360 to 2500 nm and the parameters of both curing methods (microwave and thermal) was established.

About the Authors

E. V. Matveev
Research Institute of Advanced Materials and Technology
Russian Federation

Egor V. Matveev

Moscow



A. V. Mamontov
Research Institute of Advanced Materials and Technology
Russian Federation

Aleksandr V. Mamontov

Moscow



A. I. Gajdar
Research Institute of Advanced Materials and Technology
Russian Federation

Anna I. Gajdar

Moscow



B. A. Lapshinov
Research Institute of Advanced Materials and Technology
Russian Federation

Boris A. Lapshinov

Moscow



A. N. Vinogradov
Research Institute of Advanced Materials and Technology
Russian Federation

Aleksandr N. Vinogradov

Moscow



References

1. . H. Lee and K. Nevill, Handbook of Epoxy Resins, McGraw-Hill, New York, 1982.

2. Kerber M. L. et al., Polymernye kompozitsionnye materialy: struktura, svoystva, tehnologiya [Polymer composite materials: structure, properties, technology], Saint Petersburg, Professiya Publ., 2008, 560 p. (in Russian).

3. Bazhenov S. L., Mekhanika i tekhnologiya kompozicionnyh materialov, Dolgoprudnyj, Intellekt Publ., 2014, 328 p. (in Russian).

4. Johnston K., Pavuluri S. K., Leonard M. T., Desmulliez M. P. Y., Arrighi V., Thermochimica Acta, September 2015, vol. 616, pp. 100–109. https://doi.org/10.1016/j.tca.2015.08.010

5. Tanrattanakul V., Sae Tiaw K., Journal of Applied Polymer Science, 2005, vol. 97, no. 4, pp. 1442–1461. https://doi.org/10.1002/app.215786

6. Kalganova S. G., Elektrotekhnologiya neteplovoj modifi - kacii polimernyh materialov v SVCH elektromagnitnom pole, Extended abstract of doctoral dissertation in Technical Sciences (Saratov, 2009) (in Russian).

7. Boyle M., Martin C., & Neuner J., Epoxy resins. ASM handbook, 2001, vol. 21, pp 78–89.

8. Malysheva G. V., Trudy VIAM, 2018, no. 8(68), pp. 23–27 (in Russian).

9. Nefedov V. N., T-Comm: Telekommunikaciya i transport, 2017, vol. 11, no. 6, pp. 33–37 (in Russian).

10. Ushakov A. E., Polyakov D. K., Sorina T. G. et al., RF Patent no. 2189997, Byull. Izobret., no. 27 (2002) (in Russian).

11. Deev I. S., Kablov E. N., Kobec L. P. et al., Trudy VIAM, 2014, no. 7, available at: http://viam-works.ru(accessed:11.11.2020)(inRussian). https://dx.doi.org/10.18577/2307-6046-2014-0-7-6-6

12. Lin Y. C., Chen X., Materials Letters, 2005, vol. 59, no. 29–30, pp. 3831–3836. https://doi.org/10.1016/j.matlet.2005.06.061

13. Deev I. S., Kobec L. P., Vysokomolekulyarnye soedineniya, Ser. A, 1996, vol. 38, no. 4, pp. 627–633 (in Russian).

14. Lavrent’ev V. A., Kalganova S. G., Elektro- i teplotekhnologicheskie processy i ustanovki, Collection of reports of the all-Russian conference, Saratov, SGTU, 2005, vol 2, pp. 67–70 (in Russian).

15. Kalganova S. G., Vestnik SGTU, 2006, vol. 1, no. 1(10), pp. 90–95 (in Russian).

16. Dmitriev Yu. K., Daminev R. R., Abakacheva E. M., and Islamutdinova A. A., Bashkirskij himicheskij zhurnal, 2012, vol. 19, no. 1, pp. 203–206 (in Russian).

17. Gulyaev A. I., Yakovlev N. O., Krylov V. D., Lashov O. A., Aviacionnye materialy i tekhnologii, 2017, no. 3 (48), pp. 65–73 (in Russian).

18. Gamstedt E. K., Sjogren B. A., Composites Science and Technology, 1999, vol. 59, рp. 167–178. https://doi.org/10.1016/S0266-3538(98)00061-X

19. Nygard P., Gustafson C. G., Composites: Part A, 2003, vol. 34, no. 10, pp. 995–1006. https://doi.org/10.1016/S1359-835X(03)00124-6

20. Purslow D., Composites, 1986, vol. 17, no. 4, pp. 289–303. https://doi.org/10.1016/0010-4361(86)90746-9

21. González M. G., Cabanelas J. C., Baselga J., Infrared Spectroscopy-Materials Science, Engineering and Technology, 2012, vol. 2, pp. 261–284. https://doi.org/10.5772/36323


Review

For citations:


Matveev E.V., Mamontov A.V., Gajdar A.I., Lapshinov B.A., Vinogradov A.N. Measurement of strength and microstructural characteristics of epoxypolimers cured by thermal and microwave methods. Izmeritel`naya Tekhnika. 2020;(12):35-41. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-12-35-41

Views: 79


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)