

Measurement of strength and microstructural characteristics of epoxypolimers cured by thermal and microwave methods
https://doi.org/10.32446/0368-1025it.2020-12-35-41
Abstract
In this work, we studied the strength parameters, fractographic patterns, and the microstructure of epoxy polymer samples cured both by thermal and microwave methods at various temperature, power, and time conditions. The dependence of strength on curing conditions is determined using the tensile test method. To achieve maximum strength for both curing methods optimum conditions were found. A comparative fractographic analysis of microwave and thermal cured samples fractures having similar strength characteristics was carried out by electron microscopy. It was found that microwave field curing leads to the globules size increase in the cured epoxy polymer and an increase in the number of nanopores in the material. Plastic samples local deformation is also more pronounced during fracture, which leads to a greater difference of the main and secondary cracks propagation velocities ratio. The relationship between the studied samples optical density in the wavelength range from 360 to 2500 nm and the parameters of both curing methods (microwave and thermal) was established.
About the Authors
E. V. MatveevRussian Federation
Egor V. Matveev
Moscow
A. V. Mamontov
Russian Federation
Aleksandr V. Mamontov
Moscow
A. I. Gajdar
Russian Federation
Anna I. Gajdar
Moscow
B. A. Lapshinov
Russian Federation
Boris A. Lapshinov
Moscow
A. N. Vinogradov
Russian Federation
Aleksandr N. Vinogradov
Moscow
References
1. . H. Lee and K. Nevill, Handbook of Epoxy Resins, McGraw-Hill, New York, 1982.
2. Kerber M. L. et al., Polymernye kompozitsionnye materialy: struktura, svoystva, tehnologiya [Polymer composite materials: structure, properties, technology], Saint Petersburg, Professiya Publ., 2008, 560 p. (in Russian).
3. Bazhenov S. L., Mekhanika i tekhnologiya kompozicionnyh materialov, Dolgoprudnyj, Intellekt Publ., 2014, 328 p. (in Russian).
4. Johnston K., Pavuluri S. K., Leonard M. T., Desmulliez M. P. Y., Arrighi V., Thermochimica Acta, September 2015, vol. 616, pp. 100–109. https://doi.org/10.1016/j.tca.2015.08.010
5. Tanrattanakul V., Sae Tiaw K., Journal of Applied Polymer Science, 2005, vol. 97, no. 4, pp. 1442–1461. https://doi.org/10.1002/app.215786
6. Kalganova S. G., Elektrotekhnologiya neteplovoj modifi - kacii polimernyh materialov v SVCH elektromagnitnom pole, Extended abstract of doctoral dissertation in Technical Sciences (Saratov, 2009) (in Russian).
7. Boyle M., Martin C., & Neuner J., Epoxy resins. ASM handbook, 2001, vol. 21, pp 78–89.
8. Malysheva G. V., Trudy VIAM, 2018, no. 8(68), pp. 23–27 (in Russian).
9. Nefedov V. N., T-Comm: Telekommunikaciya i transport, 2017, vol. 11, no. 6, pp. 33–37 (in Russian).
10. Ushakov A. E., Polyakov D. K., Sorina T. G. et al., RF Patent no. 2189997, Byull. Izobret., no. 27 (2002) (in Russian).
11. Deev I. S., Kablov E. N., Kobec L. P. et al., Trudy VIAM, 2014, no. 7, available at: http://viam-works.ru(accessed:11.11.2020)(inRussian). https://dx.doi.org/10.18577/2307-6046-2014-0-7-6-6
12. Lin Y. C., Chen X., Materials Letters, 2005, vol. 59, no. 29–30, pp. 3831–3836. https://doi.org/10.1016/j.matlet.2005.06.061
13. Deev I. S., Kobec L. P., Vysokomolekulyarnye soedineniya, Ser. A, 1996, vol. 38, no. 4, pp. 627–633 (in Russian).
14. Lavrent’ev V. A., Kalganova S. G., Elektro- i teplotekhnologicheskie processy i ustanovki, Collection of reports of the all-Russian conference, Saratov, SGTU, 2005, vol 2, pp. 67–70 (in Russian).
15. Kalganova S. G., Vestnik SGTU, 2006, vol. 1, no. 1(10), pp. 90–95 (in Russian).
16. Dmitriev Yu. K., Daminev R. R., Abakacheva E. M., and Islamutdinova A. A., Bashkirskij himicheskij zhurnal, 2012, vol. 19, no. 1, pp. 203–206 (in Russian).
17. Gulyaev A. I., Yakovlev N. O., Krylov V. D., Lashov O. A., Aviacionnye materialy i tekhnologii, 2017, no. 3 (48), pp. 65–73 (in Russian).
18. Gamstedt E. K., Sjogren B. A., Composites Science and Technology, 1999, vol. 59, рp. 167–178. https://doi.org/10.1016/S0266-3538(98)00061-X
19. Nygard P., Gustafson C. G., Composites: Part A, 2003, vol. 34, no. 10, pp. 995–1006. https://doi.org/10.1016/S1359-835X(03)00124-6
20. Purslow D., Composites, 1986, vol. 17, no. 4, pp. 289–303. https://doi.org/10.1016/0010-4361(86)90746-9
21. González M. G., Cabanelas J. C., Baselga J., Infrared Spectroscopy-Materials Science, Engineering and Technology, 2012, vol. 2, pp. 261–284. https://doi.org/10.5772/36323
Review
For citations:
Matveev E.V., Mamontov A.V., Gajdar A.I., Lapshinov B.A., Vinogradov A.N. Measurement of strength and microstructural characteristics of epoxypolimers cured by thermal and microwave methods. Izmeritel`naya Tekhnika. 2020;(12):35-41. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-12-35-41