Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Holographic encryption of color video with 4K resolution using phase liquid crystal spatial light modulators

https://doi.org/10.32446/0368-1025it.2023-6-21-26

Abstract

The communications number and information size are significantly increasing. Transmission of various types information (including video information) should be fast and protected from unauthorized access. The use of optical encryption for this purpose makes it possible to encode large data arrays with high cryptographic strength. Most optical information encoding systems use coherent light, which results in an extremely low signal-to-noise ratio in decrypted images. Holographic encryption of color 4K video with digital information input and dynamically changeable encoding holograms by means of the liquid crystal spatial light modulators of high resolution was implemented for the first time. The method is based on optical convolution of the input image with the encoding hologram using spatially-incoherent light. Color encoding is carried out by sequential encryption of different color channels of each video frame. Decryption is carried out by numerical methods of inverse filtering with regularization. Results of this work can be used for creation of high resolution secure video communication systems of new generation.

About the Authors

D. А. Rymov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Dmitry A. Rymov

Moscow 



A. V. Shifrina
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Anna V. Shifrina

Moscow 



P. A. Cheremkhin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Pavel A. Cheremkhin

Moscow



V. G. Rodin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Vladislav G. Rodin



V. V. Krasnov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Vitaly V. Krasnov



References

1. Alfalou A., Brosseau C. Adv. Opt. Photonics, 2009, vol. 1, pp. 589–636. https://doi.org/10.1364/aop.1.000589

2. Javidi B., Carnicer A., Yamaguchi M., et al. Journal of Optics, 2016, no. 18(8), 083001. https://doi.org/10.1088/2040-8978/18/8/083001

3. Mohamed M. A., Samarah A. S., Allah M. I. F. Int. J. Comput. Sci. Issues, 2014, vol. 11, pp. 125–129, available at: https://www.ijcsi.org/articles/Optical-encryption-techniques-anoverview.php (accessed: 11.05.2023).

4. Matin A., Wang X. Sci. Rep., 2021, vol. 11. pp. 1–11. https://doi.org/10.1038/s41598-021-02520-8

5. Carnicer A., Juvells I., Javidi B., Martínez-Herrero R. Opt. Express, 2016, vol. 24, 6793. https://doi.org/10.1364/OE.24.006793

6. Chen W. IEEE Photonics J., 2016, vol. 8, 6900608. https://doi.org/10.1109/JPHOT.2016.2550322

7. Jeon S. H., Gil S. K. J. Opt. Soc. Korea, 2016, vol. 20, pp. 722–732. https://doi.org/10.3807/JOSK.2016.20.6.722

8. Rajput S. K., Nishchal N. K. Opt. Commun., 2017, vol. 388, pp. 38–46. https://doi.org/10.1016/j.optcom.2016.11.002

9. Jaramillo A., Barrera J. F., Zea A. V., Torroba R. Opt. Lasers Eng., 2018, vol. 102, pp. 119–125. https://doi.org/10.1016/j.optlaseng.2017.10.008

10. Javidi B., Markman A., Rawat S. Appl. Opt., 2018, vol. 57, pp. B190–B196. https://doi.org/10.1364/AO.57.00B190

11. Hai H., Pan S., Liao M., Lu D., He W., Peng X. Opt. Express, 2019, vol. 27, 21204. https://doi.org/10.1364/oe.27.021204

12. Jaramillo-Osorio A., Barrera-Ramírez J. F., Mira-Agudelo A., Velez-Zea A., Torroba R. J. Opt., 2020, vol. 22, 035702. https://doi.org/10.1088/2040-8986/ab68f0

13. Lin C., Shen X., Li B. Opt. Express, 2014, vol. 22, 20727. https://doi.org/10.1364/OE.22.020727

14. Jiao S., Jin Z., Zhou C., Zou W., Li X. J. Opt. Soc. Am. A, 2018, vol. 35, A23. https://doi.org/10.1364/josaa.35.000a23

15. Evtikhiev N. N., Krasnov V. V., Ryabcev I. P., Rodin V. G., Starikov R. S., Cheremkhin P. A. Measurement Techniques, 2021, vol. 64, no. 5, pp. 346– 351. https://doi.org/10.1007/s11018-021-01940-2 ]

16. Evtikhiev N. N., Krasnov V. V., Molodtsov D. Yu., Rodin V. G., Starikov R. S., Cheremkhin P. A. Optoelectronics, Instrumentation and Data Processing, 2020, vol. 56, no. 2, pp. 134–139. https://doi.org/ 10.3103/S8756699020020053 ]

17. Zhu Y., Xu W., Shi Y. Opt. Commun., 2019, vol. 435, pp. 426– 432. https://doi.org/10.1016/j.optcom.2018.11.040

18. Cheremkhin P. A., Evtikhiev N. N., Krasnov V. V., Rodin V. G., Starikov R. S. Optics and Lasers in Engineering, 2023, vol. 166, 107584. https://doi.org/10.1016/j.optlaseng.2023.107584

19. Qin Y., Wang Z., Wang H., Gong Q. Opt. Laser Technol., 2018, vol. 103, pp. 93–98. https://doi.org/10.1016/j.optlastec.2018.01.018

20. Jiao S., Feng J., Gao Y., Lei T., Yuan X. Opt. Express, 2020, vol. 28, pp. 7301–7313. https://doi.org/10.1364/OE.383240

21. Unnikrishnan G., Joseph J., Singh K. Opt. Lett., 2000. vol. 25, pp. 887–889. https://doi.org/10.1364/OL.25.000887

22. Javidi B. Opt. Eng., 2000, vol. 39, 2031. https://doi.org/10.1117/1.1304844

23. Krasnov V. V., Starikov S. N., Starikov R. S., Cheremkhin P. A. Russian Physics Journal, 2016, vol. 58, no. 10, pp. 1394–1401. https://doi.org/10.1007/s11182-016-0661-7

24. Cheremkhin P. A., Evtikhiev N. N., Krasnov V. V., Minaeva E. D., Rodin V. G., Shifrina A. V. Proc. SPIE, 2018, vol. 10679, 106791Y. https://doi.org/10.1117/12.2307549

25. Sahoo S. K., Tang D., Dang C. Sci Rep., 2017, vol. 7, 17895. https://doi.org/10.1038/s41598-017-17916-8

26. Cheremkhin P. A., Evtikhiev N. N., Krasnov V. V., Rodin V. G., Shifrina A. V., Starikov R. S. Laser Physics Letters, 2020, vol. 17, pp. 025204. https://doi.org/10.1088/1612-202X/ab644c.

27. Evtikhiev N. N., Krasnov V. V., Kuzmin I. D., Molodtsov D. Yu., Rodin V. G., Starikov R. S., Cheremkhin P. A. Quantum Electronics, 2020, vol. 50, no. 2, pp. 195–196. https://doi.org/10.1070/QEL17139

28. Yu X., Chen H., Xiao J., Sun Y., Li X., Wang K. Optics Commun., 2022, vol. 510, pp. 127889. https://doi.org/10.1016/j.optcom.2021.127889

29. Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnyh zadach, Moscow, Nauka Publ., 1979 (In Russ.)

30. Cheremkhin P. A., Evtikhiev N. N., Krasnov V. V., Rodin V. G., Ryabcev I. P., Shifrina A. V., Starikov R. S. Appl. Opt., 2021, vol. 60, pp. 7336–7345. https://doi.org/10.1364/ao.430968

31. Fienup J. R. Appl. Opt., 1997, vol. 36, pp. 8352–8357. https://doi.org/10.1364/AO.36.008352

32. Nishchal N. K. Optical Cryptosystems, IOP Publishing, 2019. https://doi.org/10.1088/978-0-7503-2220-1


Review

For citations:


Rymov D.А., Shifrina A.V., Cheremkhin P.A., Rodin V.G., Krasnov V.V. Holographic encryption of color video with 4K resolution using phase liquid crystal spatial light modulators. Izmeritel`naya Tekhnika. 2023;(6):21-26. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-6-21-26

Views: 200


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)