

Применение байесовского подхода к построению статистических оценок параметров законов распределения случайных величин
https://doi.org/10.32446/0368-1025it.2020-11-14-21
Аннотация
Рассмотрен байесовский подход к построению эффективных статистических оценок параметров законов распределения случайных величин для законов Пуассона и Парето, экспоненциального и равномерного законов. Разработан алгоритм построения точечных и интервальных статистических оценок для параметров указанных законов. Представлены результаты сравнения с соответствующими оценками, полученными классическим методом максимального правдоподобия. Предложенный алгоритм может быть эффективно применён при разработке методик измерений, решении измерительных задач и разработке практических способов выявления систематических погрешностей измерений.
Об авторах
Р. З. ХайруллинРоссия
Москва
А. А. Закутин
Россия
Москва
Список литературы
1. Вишняков Б. В., Егоров А. И. Построение доверительных областей для траекторий движения объектов в задачах машинного зрения // Известия РАН. Теория и системы управления. 2013. № 3. С. 124–132.
2. Duygu İçen, Derya Ersel, International Journal of Approximate Reasoning, 2019, vol. 108, pp. 76–88.
3. Yang H., Jintao Ke J, Jieping Ye J., Emerging Tech nologies, 2018, vol. 96, pp. 22–37.
4. Higgins V., Asgari S., Adeli K., Clinical Biochemistry,2019, vol. 71, pp. 14–16.
5. Touzani S., Ravache B., Crowe E., Granderson J., Energy and Building Journal, 2019, vol. 18 (515), pp. 123–136.
6. Lavrik E., Frankenfeld U., Mehta S., Panasenko I., Schmidt H., Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, vol. 935, pp. 167–172.
7. Francisco S., Guzmán J., Rosa B., Rodríguez C., Doimeadios M., Ángel R., Analytica Chimica Acta, 2019, vol. 1059, pp. 1–15.
8. Gao W., Haitjema H., Fang F., Leach R., Cheung C., Savio E., Linares J., CIRP Annals., 2019, vol. 68, iss. 2.
9. Кузнецов В. А., Исаев Л. К., Шайко И. А. Метрология. М.: Стандартинформ, 2005. 298 с.
10. Волчков А. А., Исаев Ю. А., Леонова К. С., Фуфаева О. А., Хайруллин Р. З. Метод построения оценок точности измерений на основе использования апостериорной информации // Вестник метролога. 2019. № 4. С. 18–21.
11. Хайруллин Р. З. Применение байесовского подхода в задачах построения статистических оценок при обработке результатов испытаний измерительной техники // Вестник метролога. 2020. № 1. С. 9–15.
12. Khayrullin R. Z., E3S Web of Conferences “Innovative Technologies in Environmental Science and Education ITESE-2019”, 2019, vol. 135. https://doi.org/10.1051/e3sconf/201913501070
13. Айвазян С. А. Байесовский подход в эконометрическом анализе // Прикладная эконометрика. 2008. № 1 (9). С. 93–130.
14. Айвазян С. А., Мхитарян В. С. Прикладная статистика в задачах и упражнениях. М.: Издательство ЮнитиДана, 2001. 275 c.
15. Вентцель Е. С. Исследование операций. М.: Наука, 1972. 552 с.
16. Вентцель Е. С., Овчаров Л. А. Теория случайных процессов и ее инженерные приложения. М.: Наука, 2014. 383 с.
17. Park T., Kim Y., Lee J., IFAC – Paper Online, 2018, vol. 51, iss. 182018, pp. 287–291.
Рецензия
Для цитирования:
Хайруллин Р.З., Закутин А.А. Применение байесовского подхода к построению статистических оценок параметров законов распределения случайных величин. Izmeritelʹnaya Tekhnika. 2020;(11):14-21. https://doi.org/10.32446/0368-1025it.2020-11-14-21
For citation:
Khayrullin R.Z., Zakutin A.A. Application of the Bayesian approach to the construction of statistical estimates of the parameters of the distribution laws of random variables. Izmeritel`naya Tekhnika. 2020;(11):14-21. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-11-14-21