

Automated complex “Miсron” for determining measurement error of microwave radio interferometers
https://doi.org/10.32446/0368-1025it.2020-10-60-64
Abstract
The technique of radiointeroferometric measurements is presented and a theoretical estimate of the measuring error the reflecting surface movement is given. The movement are measured with microwave radio interferometers. The automated complex “Miсron” design and principle of operation are described. The complex is intended for experimental determination of the error in measuring the movement of a reflecting surface, as well as for primary and periodic verification of microwave radio interferometers. The complex “Miсron” includes a measuring instrument of the 3rd accuracy class – an incremental linear displacement transducer LIR-7A, which measures the reflecting surface movement of the test object. For the “Miсron” complex verification of the longitudinal movement measuring line is provided, which makes it possible to verify the LIR-7A transducer without dismantling it. Planeparallel gauge blocks or similar standards can be used as the initial standard for verification. The comparison of the movement measured values determined during verification and obtained by an alternative method providing the required accuracy of radio interferometric measurements is carried out.
About the Authors
D. Ye. BezrukovRussian Federation
Dmitriy Ye. Bezrukov
Sarov, Nizhny Novgorod region
N. S. Kornev
Russian Federation
Nikolay S. Kornev
Sarov, Nizhny Novgorod region
N. A. Makarichev
Russian Federation
Nikolay A. Makarichev
Sarov, Nizhny Novgorod region
K. V. Mineev
Russian Federation
Kirill V. Mineev
Sarov, Nizhny Novgorod region
A. V. Nazarov
Russian Federation
Andrey V. Nazarov
Sarov, Nizhny Novgorod region
D. A. Tregubenko
Russian Federation
Dmitriy A. Tregubenko
Sarov, Nizhny Novgorod region
References
1. Kanakov V. A., Katin S. V., Kornev N. S., Mikhailov A. L., Nazarov A. V., Orekhov Yu. I., Rodionov A. V., Khvorostin V. N., Antennas, 2016, vol. 1 (221), рр. 49–54.
2. Bel’skii V. M., Mikhailov A. L., Rodionov A. V., Sedov A. A., Combustion, Explosion, and Shock Waves, 2011, vol. 47, рр. 639–650.
3. Kanakov V. A., Lupov S. Yu., Orekhov Yu. I., Rodionov A. V., Radiophysics and Quantum Electronics, 2008, vol. 3, рр. 210–221.
4. Nevozmushchayushchie metody diagnostiki bystroprotekayushchikh protsessov, ed. A. L. Mikhailov, Sarov, RFNCVNIIEF Publ., 2015 (in Russian).
5. Mokrushin S .S., Anikin N. B., Malyugina S. N., Pavlenko A. V., Tyaktev A. A., Instruments and Experimental Techniques, 2014, vol. 4, pp. 475–478.
6. Pavlenko A. V., Malyugina S. N., Pereshitov V. V., Lisitsina I. Instruments and Experimental Techniques, 2013, vol. 2, pp. 240–241.
7. Chudakov E. A., Fedorov A. V., Finyushin S. A., Kalashnikov D. A., Shmelev I. V., Combustion, Explosion, and Shock Waves, 2018, vol. 5, pp. 593–598.
8. Panov K. N., Komrachkov V. A., Tselikov I. S., Combustion, Explosion, and Shock Waves, 2007, vol. 3, pp. 365–371.
9. Vlasov A. N., Zhuravlev A. V., Pashentsev V. A., Smirnov V. N., Smirnov E. B., Stolbikov M. Y., Cheremazov V. E., Ten K. A., Pruuel E. R., Kashkarov A. O., Rubtsov I. A., Kremenko S. I., Combustion, Explosion, and Shock Waves, 2019, vol. 4, pp. 409–417.
10. Arinin V. A., Kartanov S. A., Kuropatkin Y. P., Lebedev A. I., Mikhailov A. L., Mikhailyukov K. L., Ogorodnikov V. A., Oreshkov O. V., Panov K. N., Syrunin M. A., Tatsenko M. V., Tkachenko B. I., Tkachenko I. A., Khramov I. V., Tsoi A. P., Combustion, Explosion, and Shock Waves, 2018, vol. 5, pp. 513–521.
11. Koch B. C., C. R. Acad. Sci. Paris, 1953, vol. 236, pp. 661–663.
12. Cawsey G. F., Farrands G. F., Thomas S., Proc. Roy. Soc. London. Ser. A: Mathematical and Physical Sciences, 1958, vol. 248, pp. 499–521.
13. McCall G. H., Bongianni W. L., Miranda G. A., Rev. Sci. Instrum., 1985, no. 8, pp. 1612–1618.
14. Levin B. R., Teoreticheskie osnovy statisticheskoi radiotekhniki, Moscow, Radio i svyaz’ Publ., 1989 (in Russian)
Review
For citations:
Bezrukov D.Ye., Kornev N.S., Makarichev N.A., Mineev K.V., Nazarov A.V., Tregubenko D.A. Automated complex “Miсron” for determining measurement error of microwave radio interferometers. Izmeritel`naya Tekhnika. 2020;(10):60-64. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-10-60-64