Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Dimensions of plane and solid angles and their units in the International System of Units (SI)

https://doi.org/10.32446/0368-1025it.2020-10-26-32

Abstract

The situation that has developed in the International System of Units (SI) as a result of adopting the recommendation of the International Committee of Weights and Measures (CIPM) in 1980, which proposed to consider plane and solid angles as dimensionless derived quantities, is analyzed. It is shown that the basis for such a solution was a misunderstanding of the mathematical formula relating the arc length of a circle with its radius and corresponding central angle, as well as of the expansions of trigonometric functions in series. From the analysis presented in the article, it follows that a plane angle does not depend on any of the SI quantities and should be assigned to the base quantities, and its unit, the radian, should be added to the base SI units. A solid angle, in this case, turns out to be a derived quantity of a plane angle. Its unit, the steradian, is a coherent derived unit equal to the square radian.

About the Authors

M. I. Kalinin
Russian Research Institute for Metrological Service (VNIIMS)
Russian Federation

Mikhail I. Kalinin

Moscow



L. K. Lev K. Isaev
Russian Research Institute for Metrological Service (VNIIMS)
Russian Federation

Lev K. Isaev

Moscow



F. V. Bulygin
Russian Research Institute for Metrological Service (VNIIMS)
Russian Federation

Fedor V. Bulygin

Moscow



References

1. . CIPM, 1969, 58 Session: Recommandation 1, p. 30, available at: https://www.bipm.org/en/CIPM/db/1969/1/(accessed:31.08.2020).

2. Comité Consultatif des Unités 1980, 7 session: Recommandation U1, p. U12, available at: https://www.bipm.org/utils/common/pdf/CC/CCU/CCU7.pdf(accessed:31.08.2020).

3. CIPM, 1980, 69 Session: Recommandation 1 (CI-1980), p. 24, available at: https://www.bipm.org/utils/common/pdf/CIPM-PV-OCR/CIPM1980.pdf(accessed:31.08.2020).

4. The International System of Units (SI). 1985, 5th ed., available at: https://www.bipm.org/utils/common/pdf/si_brochure_5.pdf(accessed:31.08.2020).

5. Quinn T. J., Metrologia, 1996, vol. 33, no. 1, pp. 81–89. https://doi.org/10.1088/0026-1394/33/1/11

6. The International System of Units (SI), 2019, 9th ed., available at: https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9-EN.pdf(accessed:31.08.2020).

7. Mills I. M., Taylor B. N., and Thor A. J., Metrologia, 2001, vol. 38, no. 4, pp. 353–361. https://doi.org/10.1088/0026-1394/38/4/8

8. Quincey P., Metrologia, 2016, vol. 53, no. 2, pp. 840–845. https://doi.org/10.1088/0026-1394/53/2/840

9. Maxwell James Clerk, The scientifi c papers, vol. 1, Cambridge: At the university press, 1890.

10. Standard ISO 80000-1, 2009. Quantities and units. Part 1: General.

11. Vinogradov I. M. (ed), Matematicheskaya Encyclopedia, Moscow, Sovetskaya encyclopedia Publ., vol. 4, 1984, 1216 p. (in Russian).

12. Sedov L. I., Metody podobija I razmernosti v mekhanike, Moscow, Nauka Publ., 1877, 438 p. (in Russian).

13. Mohr P. J., and Phillips W. D., Metrologia, 2015, vol. 52, no. 1, pp. 40–47. https://doi.org/10.1088/0026-1394/52/1/40

14. Quincey P., Mohr P. J., and Phillips W. D., Metrologia, 2019, vol. 56, no. 4, 043001. https://doi.org/10.1088/1681-7575/ab27d7

15. Ilyin V. A., Poznyak E. G. Fundamentals of Mathematical Analysis: Part1, 7th edn, Moscow, Fizmatlit Publ., 2005, 646 p. (in Russian).

16. Torrens A. B., Metrologia, 1986, vol. 22, no. 1, pp. 1–7. https://doi.org/10.1088/0026-1394/22/1/002

17. Brownstein K. R., Am. J. Phys., 1997, vol. 65, no. 7, pp. 605–614. https://doi.org/10.1119/1.18616

18. Kalinin M. I., Metrologia, 2019, vol. 56, no. 6, 065009. https://doi.org/10.1088/1681-7575/ab3fbf

19. Eder W. E., Metrologia, 1982, vol. 18, no. 1, pp. 1–12. https://doi.org/10.1088/0026-1394/18/1/002

20. Emerson W. H., Metrologia, 2005, vol. 42, no. 4, pp. L23–L26. https://doi.org/10.1088/0026-1394/42/4/L02

21. Vinogradov I. M. (ed), Matematicheskaya Encyclopedia, Moscow, Sovetskaya encyclopedia Publ., vol. 5, 1985, 1248 p. (in Russian).

22. Wittmann H. A., Metrologia, 1988, vol. 25, no. 4, pp. 193–203. https://doi.org/10.1088/0026-1394/25/4/001

23. Mohr P. J., and Phillips W. D., A proposal to classify the radian as a base unite in the SI. http://arXiv.org/abs/1604.06774v1(18Feb2016).

24. Kalinin M. I., On the status of plane and solid angles in the International System of Units (SI). arXiv:1810.12057v3(8Nov2018). https://doi.org/10.1088/1681-7575/ab3fbf

25. Kalinin M. I., Zakonodatel’naja i prikladnaja metrologia, 2018, no. 6, pp. 12–16.


Review

For citations:


Kalinin M.I., Lev K. Isaev L.K., Bulygin F.V. Dimensions of plane and solid angles and their units in the International System of Units (SI). Izmeritel`naya Tekhnika. 2020;(10):26-32. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-10-26-32

Views: 149


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)