

High-temperature spectral thermometry in conditions of intense microwave electromagnetic fields
https://doi.org/10.32446/0368-1025it.2020-9-54-59
Abstract
In this paper, a practical application variant of the high-temperature spectral thermometry method for controlling the temperature of a dielectric object heated in a high-intensity microwave electromagnetic field is proposed. The advantages of using the spectral pyrometry method over the methods of color and brightness pyrometry when registering high temperatures (from 500 °C and above) are described. The optical fiber cable used in this method, which receives thermal radiation from an object heated in the microwave field, is subject to the negative influence of the electromagnetic field, which leads to its unacceptable heating and failure. To eliminate this phenomenon, a non-standard use of an cutoff waveguide placed not outside, but inside the microwave heating chamber is proposed. It is shown that this solution completely eliminates the negative influence of the electromagnetic field on the fiber optic cable and allows placing the receiving end of the cable in close proximity to the object being heated. The calculation of geometric parameters of the cutoff waveguide for the operating frequency of the electromagnetic field of 2450 MHz is given.
About the Authors
B. A. LapshinovRussian Federation
Boris A. Lapshinov
Moscow,
A. V. Mamontov
Russian Federation
Alexandr V. Mamontov
Moscow,
References
1. Mamontov А. V., Nefedov V. N., Khritkin, S. A., Measurement Techniques, 2018, vol. 61, pp. 723–726. https://doi.org/10.1007/s11018-018-1491-5
2. Batanov G. M., Berezhetskaya V. A., Kop’ev V. A., Kosyi I. A., Magunov A. N., Russian Journal of Physical Chemistry B: Focus on Physics, 2013, vol. 32, no. 4, pp. 52–59.
3. Khodunkov V. P., Measurement Techniques, 2019, vol. 61, pp. 1126–1133. https://doi.org/10.1007/s11018-019-01559-4
4. Magunov A. N., Spektral’naya pirometriya, Moscow, Fizmatlit Publ., 2012, 248 p. (in Russian).
5. Magunov A. N., Lapshinov B. A., Suvorinov A. V., Innovatsii, 2015, no. 4 (198), pp. 13–16 (in Russian).
6. Lapshinov B. A., Suvorinov A. V., Timchenko N. I., Elektronika NTB, 2018, no. 6, pp. 116–119 (in Russian).
7. Lebedev I. V., Tekhnika i pribory SVCh, vol. 1, Moscow, Vysshaya shkola Publ., 1970, 376 p. (in Russian).
8. Divin A. G., Ponomarev S. V., Sredstva izmerenii temperatury, opticheskikh i radiatsionnykh velichin, Tambov, Izdatel’stvo FGBOU VPO “TGTU” Publ., 2013, vol. 3, 108 p. (in Russian).
9. Garcia-Banos B., Reinosa J. J., Peñaranda-Foix F. L., et al., Scientifi c Reports 9, 10809 (2019). https://doi.org/10.1038/s41598-019-47296-0
10. Arkhangel’skii Yu. S., Devyatkin I. I., Sverkhvysokochastotnye nagrevatel’nye ustanovki dlya intensifi katsii tekhnologicheskikh protsessov, Saratov, Izd-vo Saratovskogo universiteta Publ., 1983, 140 p. (in Russian).
11. Ernest C. Okress, Microwave Power Engineering, Academic Press, New York and London, 1968.
12. Bolasodun B., Nesbitt A., Wilkinson A., Day R., Effect Of Curing Method On Physical And Mechanical Properties Of Araldite DLS 772 / 4 4 DDS Epoxy System, International Journal of Scientifi c & Technology Research, vol. 2, no. 2, pp. 12–18.
Review
For citations:
Lapshinov B.A., Mamontov A.V. High-temperature spectral thermometry in conditions of intense microwave electromagnetic fields. Izmeritel`naya Tekhnika. 2020;(9):54-59. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-9-54-59