

A non-contact pneumoelectric device for liquid viscosity measurement
https://doi.org/10.32446/0368-1025it.2020-9-43-49
Abstract
Non-contact aerohydrodynamic methods, unlike other non-contact methods, allow highly accurate determination of the viscosity of inhomogeneous and opaque liquids in any industry in the interval of 2–100 Pa·s. The pulsed aerohydrodynamic method was proposed about thirty years ago, and is the most promising of the non-contact methods, but it has not received proper development. The method consists in deforming the surface of a tested liquid with a gas jet and determining the viscosity from the time takes to reach a predetermined degree of deformation from the moment when the gas jet was applied. The paper presents the results of studies of a non-contact aerohydrodynamic device for measuring viscosity with a laser triangulation detector of the liquid surface, the use of which made it possible to fully automate the device and significantly increase the accuracy of viscosity measurements. The aim of the research is to choose the most promising of four possible variants for implementing the device. The choice was made according to criteria, the fulfillment of which ensures a decrease in the sensitivity of the device to influencing quantities, and an increase in the measurement accuracy. A description of the design and principle of operation of the device is given. The results of studies of design parameters influence on the systematic and random components of the measurement error are presented. The relative error in measuring the viscosity of liquids in the interval from 2 to 100 Pa·s does not exceed 2 %. The developed non-contact aerohydrodynamic device is advisable to use in testing of viscous liquids in various industries.
Keywords
About the Authors
A. P. SavenkovRussian Federation
Aleksandr P. Savenkov
Tambov
M. M. Mordasov
Russian Federation
Mikhail M. Mordasov
Tambov
V. A. Sychev
Russian Federation
Vladislav A. Sychev
Tambov
References
1. Mordasov M. M., Savenkov A.P., Inorganic Materials, 2014, vol. 50, no. 15, pp. 1435–1443. https://doi.org/10.1134/S0020168514150126
2. Sohl C. H., Miyano K., Ketterson J. B., Review of Scientifi c Instruments, 1978, vol. 49, no. 10, pp. 1464–1469. https://doi.org/10.1063/1.1135288
3. Behroozi F., Smith J., Even W., American Journal of Physics, 2010, vol. 78, no. 11, pp. 1165–1169. https://doi.org/10.1119/1.3467887
4. B. M. Pierce, D. B. Chang, US Patent no. 5005401 (9 April 1991).
5. Nishimura Y., Hasegawa A., Nagasaka Y., Review of Scientifi c Instruments, 2014, vol. 85, no. 044904, 11 p. https://doi.org/10.1063/1.4871992
6. Koller T. M., Klein T., Giraudet C., Chen J., Kalantar A., van der Laan G. P., Rausch M. H., Froba A. P., Journal of Chemical & Engineering Data, 2017, vol. 62, no. 10, pp. 3319−3333. https://doi.org/10.1021/acs.jced.7b00363
7. Herlach D. M., Cochrane R. F., Egry I., Fecht H. J., Greer A. L., International Materials Reviews, 1993, vol. 38, no. 6, pp. 273–347. https://doi.org/10.1179/095066093790326267
8. Li L. H., Hu L., Yang S. J., Wang W. L., Wei B., Journal of Applied Physics, 2016, vol. 119, no. 035902, 8 p. https://doi.org/10.1063/1.4940243
9. Brillo J., Lohöfer G., Schmidt-Hohagen F., Schneider S., Egry I., International Journal of Materials and Product Technology, 2006, vol. 26, no. 3/4, pp. 247–273. https://doi.org/10.1504/IJMPT.2006.009469
10. Langstaff D., Gunn M., Greaves G. N., Marsing A., Kargl F., Review of Scientifi c Instruments, 2013, vol. 84, no. 124901, 10 p. https://doi.org/10.1063/1.4832115
11. Kremer J., Kilzer A., Petermann M., Review of Scientifi c Instruments, 2018, vol. 89, no. 015109, 8 p. https://doi.org/10.1063/1.4998796
12. Ansari Hosseinzadeh V., Holt R. G., Journal of Applied Physics, 2017, vol. 121, no. 174502, 6 p. https://doi.org/10.1063/1.4982908
13. Kuo F.-J., Sheng C.-T., Ting C.-H., Journal of Food Engineering, 2008, vol. 86, no. 1, pp. 84–90. https://doi.org/10.1016/j.jfoodeng.2007.09.016
14. Mordasov M. M., Savenkov A. P, Chechetov K. E., Sensors and Systems, 2017, no. 4, pp. 47–52 (in Russian).
15. Postnov D. D., Moller F., Sosnovtseva O., PLoS ONE, 2018, vol. 13(9), no. e0203141, 10 p. https://doi.org/10.1371/journal.pone.0203141
16. Bezuglyj B. A., Tarasov O. A., Chemodanov S. I., RF Patent no. 2305271, Byull. Izobret., no. 24 (2007).
17. Yoshitake Y., Mitani, S., Sakai, K., Takagi, K., Journal of Applied Physics, 2005, vol. 97, no. 024901, 6 p. https://doi.org/10.1063/1.1839640
18. S. Nowinski, GB Patent no. 2192987 (27 January 1988).
19. P. G. Backes, US Patent no. 5024080 (18 June 1991).
20. Mordasov M. M., Savenkov A. P., Industrial Laboratory. Diagnostics of Materials, 2009, vol. 75, no. 2, pp. 33–37 (In Russian).
21. Mordasov D. M., Mordasov M. M., Savenkov A. P., Aerogidrodinamicheskie effekty v beskontaktnyh struinyh metodah nerazrushayuschego kontrolya vyazkosti zhidkih veschestv, Moscow, Fizmatlit Publ., 2012, 352 p. (in Russian).
22. Mordasov M. M., Savenkov A. P., Safonova M. E., Sychev V. A., Optoelectronics, Instrumentation and Data Processing, 2018, vol. 54, no. 1, pp. 69–75. https://doi.org/10.3103/S8756699018010119
23. Mordasov M. M., Savenkov A. P., Sychev V. A., Mozgova G. V., Sensors and Systems, 2018, no. 3, pp. 49–53 (in Russian).
24. Mischenko S. V., Mordasov M. M., Savenkov A. P., Sychev V. A., Measurement Techniques, 2020, vol. 63, nо. 4, pp. 288–294. https://doi.org/10.1007/s11018-020-01784-2
Review
For citations:
Savenkov A.P., Mordasov M.M., Sychev V.A. A non-contact pneumoelectric device for liquid viscosity measurement. Izmeritel`naya Tekhnika. 2020;(9):43-49. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-9-43-49