

Improvement and possibilities of application of calibration methods for optoelectronic vibration displacement sensor
https://doi.org/10.32446/0368-1025it.2020-9-36-42
Abstract
The characteristics of non-contact sensors for measuring displacements, deformations, and vibration parameters using processes of various physical nature are compared. Within the framework of the diffuse-mirror reflection model, the efficiency of using optocouplers for developing non-contact vibration displacement sensors is substantiated. The urgent tasks of research and development of sensors using near infrared radiation reflected from the surface of the controlled object are formulated. The research technique based on modern algorithms and means of digital processing of vibrosignals is given. The difficulties of studying the metrological characteristics of sensors in a wide dynamic and frequency ranges using electrodynamic vibration stands are considered. The results of a full-scale study of the basic metrological characteristics of a prototype optoelectronic sensor providing measurements of displacements with an amplitude of up to 5 mm in the frequency range from 0 to 3 kHz are presented. The results of analysis of the amplitude-frequency characteristics of the sensor in the range from 5 Hz to 3 kHz, obtained using two disks made on a 3D printer, are presented. The advantages and disadvantages of non-contact sensors based on infrared optocouplers are given.
About the Authors
L. A. VarzihtskiRussian Federation
Leonid A. Varzihtski
Samara
N. V. Chertykovtseva
Russian Federation
Natalia V. Chertykovtseva
Samara
E. M. Tarasov
Russian Federation
Evgenii M. Tarasov
Samara
References
1. . Lambert J. H., Photometria sive de mensura et gradibus luminus, colorum et umbrae, Augsburg, Eberhard Klett, 1760.
2. Koshelev E. M. et al., Vestnik MGU. Ser. Fizika, Astronomiya, 1976, vol. 18, no. 5, pp. 25–34 (in Russian).
3. Oleynik V. I., Shmarov V. N., Sistemy obrabotki informacii, 2005, vol. 3 (43) (in Russian).
4. Naplekov D. M., Tur A. V., Yanovsky V. V., Phys. Rev. E, 2013, vol. 87, р. 042901. https://doi.org/10.18500/0869-6632-2014-22-4-55-65
5. John William Strutt Rayleigh, The theory of Sound, London, Macmillan and Co., 1877.
6. Ladianov V. I., Starostin O. V., Karban S. P. et al., Himicheskaya fi zika i mezoskopiya, 2016, vol. 18, no. 3, pp. 421–427 (in Russian).
7. Ming Yang, Measurement, 2015, vol. 69, рр. 81–86. https://doi.org/10.1016/j.measurement.2015.02.014
8. Joseph Du Carme, Advances in Productive, Safe, and Responsible Coal Mining, 2019, рр. 101–119. https://doi.org/10.1016/B978-0-08-101288-8.00003-1
9. Wen Chin Foo, Effendi Widjaja, Yuet Mei Khong, Rajeev Gokhale, Sui Yung Chan, Journal of Pharmaceutical and Biomedical Analysis, 2018, vol. 150, рр. 191–198. https://doi.org/10.1016/j.jpba.2017.11.068
10. Kaveh Barri, Behnam Jahangiri, Omid Davami, William G. Buttlar, Amir H. Alavi, Measurement, 2020, vol. 151, р. 107212. https://doi.org/10.1016/j.measurement.2019.107212
11. Varzhitskii L. A., Chertykovtseva N. V., Measurement Techniques, 2019, vol. 62, no. 7, pp. 622–628. https://doi.org/10.1007/s11018-019-01669-z
Review
For citations:
Varzihtski L.A., Chertykovtseva N.V., Tarasov E.M. Improvement and possibilities of application of calibration methods for optoelectronic vibration displacement sensor. Izmeritel`naya Tekhnika. 2020;(9):36-42. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-9-36-42