Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Neural networks application for phasechronometric measurement information processing

https://doi.org/10.32446/0368-1025it.2020-9-31-35

Abstract

This article describes the processing technique of measuring phasechronometric information based on the neural networks use. The novelty of the proposed approach lies in the choice of a classification feature and the perceptron algorithm use as an algorithm for binary classification performing. In this article, to assess the concept operability, the simplest binary classification of the lathe operation modes is made: idle or cutting.

About the Authors

D. D. Boldasov
Bauman Moscow State Technical University
Russian Federation

Dmitriy D. Boldasov

Moscow



Ju. V. Drozdova
Bauman Moscow State Technical University
Russian Federation

Julia V. Drozdova

Moscow



A. S. Komshin
Bauman Moscow State Technical University
Russian Federation

Alexander S. Komshin

Moscow



A. B. Syritskii
Bauman Moscow State Technical University
Russian Federation

Antony B. Syritskii

Moscow



References

1. Kabak I. S., Sukhanova N. V., Gadelev A. M., Izvestiya Kabardino-Balkarskogo gosudarstvennogo universiteta, 2012, no. 4, vol. 2, pp. 77–79 (in Russian).

2. Azmi A. I., Advances in Engineering Software, 2015, vol. 82, pp. 53–64. https://doi.org/10.1016/j.advengsoft.2014.12.010

3. Rizal M. et al., Applied Soft Computing, 2013, vol. 13, pp. 1960–1968. https://doi.org/10.1016/j.asoc.2012.11.043

4. Silva R. G., Reuben R. L., Baker K. J. and Wilcox S. J., Mechanical Systems and Signal Processing, 1998, vol. 12, pp. 319–332. https://doi.org/10.1006/mssp.1997.0123

5. Proteau A. et al., The International Journal of Advanced Manufacturing Technology, 2019, vol. 103, pp. 101–110. https://doi.org/10.1007/s00170-019-03533-4

6. Syritskii A. B., Measurement Techniques, 2016, vol. 59, no. 6, pp. 595–599. https://doi.org/10.1007/s11018-016-1014-1

7. Kiselev M. I., Pribory, 2016, no. 10 (196), pp. 51–54 (in Russian).

8. Boldasov D. D., Komshin A. S., Syritskii A. B., Method of Lathe Tool Condition Monitoring Based on the Phasechronometric Approach. In: Advances in Automation. RusAutoCon 2019, eds Radionov A., Karandaev A. Lecture Notes in Electrical Engineering, 2020, Springer, Cham, vol. 641. https://doi.org/10.1007/978-3-030-39225-3_82

9. Geurts P., Wehenkel L., Knowledge Discovery in Databases: PKDD 2005, Springer, 2005, рp. 478–485. https://doi.org/10.1007/11564126_48

10. Scikit-learn user guide Chapter 3 Supervised learning. Release 0.20.3 March 2019, available at: https://scikitlearn.org/stable/_downloads/scikit-learn-docs.pdf(accessed:06.03.2019).


Review

For citations:


Boldasov D.D., Drozdova J.V., Komshin A.S., Syritskii A.B. Neural networks application for phasechronometric measurement information processing. Izmeritel`naya Tekhnika. 2020;(9):31-35. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-9-31-35

Views: 88


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)