Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Nonlinear parameter estimation by the point-mass method taking into account correlation of partial estimates

https://doi.org/10.32446/0368-1025it.2020-9-9-14

Abstract

A new solution to the problem of nonlinear parameter estimation is considered. The peculiarity of this problem is that the arguments of a nonlinear function are not only the measurement data and the required parameters, but also supplementary parameters. Supplementary parameters are a priori unknown, but they are necessary only to find optimal estimates of the required parameters. The estimate of the desired parameters is formed according to the point-mass method as a weighted sum of partial estimates obtained for the specified values of supplementary parameters. This solution allows us to eliminate a priori probabilities for supplementary parameters by taking into account additional covariance of weight coefficients and (or) specified partial estimates. The considered approach is effective in solving specified nonlinear estimation problems characterized by low accuracy of available measurement data and (or) their few number

About the Authors

A. V. Sholokhov
The Military Academy of Strategic Rocket Troops after Peter the Great (branch)
Russian Federation

Aleksei V. Sholokhov

Serpukhov



S. B. Berkovich
The Military Academy of Strategic Rocket Troops after Peter the Great (branch); Institute of Engineering Physics
Russian Federation

Sergei B. Berkovich

Serpukhov



N. I. Kotov
The Military Academy of Strategic Rocket Troops after Peter the Great (branch); Institute of Engineering Physics
Russian Federation

Nikolai I. Kotov

Serpukhov



M. G. Belonozhko
The Military Academy of Strategic Rocket Troops after Peter the Great (branch)
Russian Federation

Maksim G. Belonozhko

Serpukhov



References

1. Berkovskii N. A., Stepanov O. A., Journal of Computer and Systems Sciences International, 2013, vol. 52, no. 3, pp. 3–14 (in Russian).

2. Dmitriev S. P, Stepanov O. A., Izvestiya RAN. Teoriya i sistemy upravleniya, 2000, vol. 4, pp. 52–61 (in Russian).

3. Stepanov O. A., Motorin A. V., Vasil’ev V. A., Toropov A. B., XXIX Conference Pamyati Vydayushchegosya Konstruktora Giroskopicheskih Priborov N. N. Ostryakova, Proceedings of the All-Russian Conference, St. Petersburg, October 7–9, 2014. St. Petersburg, CSRI Elektropribor, 2014, pp. 293–302.

4. Stepanov O. A., Toropov A. B., Giroskopiya i navigaciya, 2015, vol. 3(90), pp. 102–125.

5. Stepanov O. A., Osnovy teorii ocenivaniya s prilozheniyami k zadacham obrabotki navigacionnoj informacii. CH. 1. Vvedenie v teoriyu ocenivaniya, St. Petersburg, CSRI Elektropribor Publ., 2010, 509 p. (in Russian).

6. Sholohov A. V., Kotov N. I., Druzhinin I. M., Geodeziya i kartografi ya, 2014, vol. 8, pp. 17–20 (in Russian).

7. Berkovich S. B., Kotov N. I. S adekov R. N., Minkin Yu. I., Sholokhov A. V., Measurement Techniques, 2017, vol. 60, pp. 355–358. https://doi.org/10.1007/s11018-017-1201-8

8. Alspach D. L., and Sorenson H. W., Nonlinear Bayesian Estimation Using Gaussian Sum Approximations, IEEE Trans. on Automatic Control, 1972, vol. AC-17, no. 4, pp. 439–448.

9. Starosel’cev L. P., Yashnikova O. M., Nauchnotekhnicheskij vestnik informacionnyh tekhnologij, mekhaniki i optiki, 2016, vol. 16, no. 3, pp. 533–540 (in Russian).

10. Koneshov V. N., Solov’ev V. N., Pogorelov V. V., Nepoklonov V. B., Afanas’eva L. V., Drobyshev M. N., Geofi zicheskie issledovaniya, 2016, vol. 17, no. 3, pp. 5–16 (in Russian). https://doi.org/10.21455/gr2016.3-1

11. Jordan S. K., Journal of Geophysical Research, 1972, vol. 77, no. 20, pp. 2156–2202.

12. James S. Meditch, Stochastic optimal linear estimation and control, New York, McGraw-Hill, 1969.

13. Dzhandzhgava G. I., Avgustov L. I. Navigaciya po geopolyam. Nauchno-metodicheskie materialy, Moscow, Nauchtekhlitizdat Publ., 2018, 296 p. (in Russian).

14. Dmitriev S. P., Vysokotochnaya morskaya navigaciya, St. Petersburg, Sudostroenie Publ., 1991, 220 p. (in Russian).

15. Peshekhonov V. G., Stepanov O. A., Avgustov L. I. et al., Sovremennye metody i sredstva izmereniya parametrov gravitacionnogo polya Zemli, St. Petersburg, CSRI Elektropribor Publ., 2017, 390 p. (in Russian).

16. Hofmann-Wellenhof B., Moritz H., Physical Geodesy, Springer, 2005.

17. Kurdyukov A.P., Stepanov O.A., Avtomatika i telemekhanika, 2016, vol. 1. pp. 3–4 (in Russian).


Review

For citations:


Sholokhov A.V., Berkovich S.B., Kotov N.I., Belonozhko M.G. Nonlinear parameter estimation by the point-mass method taking into account correlation of partial estimates. Izmeritel`naya Tekhnika. 2020;(9):9-14. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-9-9-14

Views: 120


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)