Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Dielectric properties of the human red blood cell

https://doi.org/10.32446/0368-1025it.2020-7-62-67

Abstract

The dielectric properties of the erythrocyte were studied. Experimental methods and results of measuring the dielectric properties of individual human erythrocyte are presented. The method is theoretically justified. It is established that values of the complex permittivity of the erythrocyte, capacitance, tangent of dielectric losses remains almost constant despite significant changes in conductivity, the content of NaCl of the cell suspension. These values reflect the stability of the studied parameters of erythrocytes under conditions of changes within a wide range of the environment in which the cells are located. Complex cell permittivity and cell dielectric loss tangent are promising parameters for objective diagnostics of human diseases. The introduction of measurements of cell permittivity and cell dielectric loss tangent into medical practice will probably allow us to characterize the process of individual cell self-regulation in more detail.

About the Authors

V. M. Generalov
Federal State Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor
Russian Federation

Vladimir M. Generalov

Koltsovo, Novosibirsk region



A. S. Safatov
Federal State Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor
Russian Federation

Alexander S. Safatov

Koltsovo, Novosibirsk region



M. V. Kruchinina
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Margarita V. Kruchinina

Novosibirs



A. A. Gromov
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Andrey A. Gromov

Novosibirs



G. A. Buryak
Federal State Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor
Russian Federation

Galina A. Buryak

Koltsovo, Novosibirsk region



K. V. Generalov
Federal State Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor
Russian Federation

Konstantin V. Generalov

Koltsovo, Novosibirsk region



V. N. Kruchinin
Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Vladimir N. Kruchinin

Novosibirsk



References

1. Brito M. A., Silva R. F., Brites D., Cell Biol. Toxicol., 2002, vol. 18, no. 3, pp. 181–192. https:/doi.org/10.1023/A:1015563704551

2. Gimsa J., Schnelle T., Zechel G., Glaser R., Biophys J., 1994, vol. 66, no. 4, 1244–1253. https:/doi.org/10.1016/S0006-3495(94)80908-7

3. Krueger M., Thom F., Biophys. J., 1997, vol. 73, no. 5, pp. 2653–2666. https:/doi.org/10.1016/S0006-3495(97)78294-8

4. Engelhardt H., Gaub H., Sackmann E., Nature, 1984, vol. 307, pp. 378–380. https://doi.org/10.1038/307378a0

5. Donath E., Pastushenko V., Bioelectrochem. Bioenerg., 1980, vol. 7, no. 1, pp. 31–40. https:/doi.org/10.1016/0302-4598(80)87029-2

6. Kononenko V. L., Shimkus J. K., Bioelectrochemistry, 2002, vol. 55, no. 1-2, pp. 97–100. https:/doi.org/10.1016/s1567-5394(01)00129-3

7. Hughes M. P., Morgan H., Rixon F. J., Biochim. Biophys. Acta, 2002, vol. 1571, no. 1. pp. 1–8. https:/doi.org/10.1016/s0304-4165(02)00161-7

8. Gascoyne P., Pethig R., Satayavivad J., Becker F. F., Ruchirawat M., Biochim. Biophys. Acta, 1997, vol. 1323, no. 2, pp. 240– 252. https:/doi.org/10.1016/s0005-2736(96)00191-5

9. Ratanachoo K., Gascoyne P. R., Ruchirawat M., Biochim. Biophys. Acta, 2002, vol. 1564, no. 2, pp. 449–458. https:/doi.org/10.1016/s0005-2736(02)00494-7

10. Rubtsova L. Yu., Potolitsyna N. N., Mongalev N. P., Siberian Journal of Life Sciences and Agriculture, 2017, vol. 9, no. 2, pp. 121–141. https:/doi.org/10.12731/wsd-2017-2-121-141

11. Kinosita K. Jr., Tsong T. Y., Biochim. Biophys. Acta, 1977, vol. 471, no. 2, pp. 227–242. https://doi.org/10.1016/0005-2736(77)90252-8

12. Gopala K. G., Anwar A. A. K., Mohan D. R., Ahmad A., J. Biomed. Eng., 1989, vol. 11, no. 5, pp. 375–380. https:/doi.org/10.1016/0141-5425(89)90099

13. Akhadov Y. H. Dielectric Properties of Pure Fluids. National Standard Reference Data Service Guide, Moscow, Standards, 1972, 412 p. (in Russian).

14. Charomonenko S. S., Rakitjansky, D. D. Electrophoresis blood cells in norm and a pathology, Minsk, 1974, 143 р. (in Russian).

15. Hughes M. P., Nanoelectromechanics in Engineering and biology, Boca Raton, London, N. Y., Washington, D.C., CRC PRESS Boca Raton, 2003, 320 p.

16. Kaisti M., Biosensors and Bioelectronics, 2017, no. 98, pp. 437–448. https:/doi.org/10.1016/j.bios.2017.07.010

17. Recordati G., Bellini T. G., Exp. Physiol., 2004, vol. 89, no. 1, pp. 27–38. https:/doi.org/10.1113/expphysiol.2003.002633

18. Generalov V. M., Kruchinina M. V., Durimanov A. G., Medvedev A. A., Safatov A. S., Sergeev A. N., Buryak G. A., Kurilovich S. A., Gromov A. A., Dielectrophoresis in the diagnosis of infectious and noninfectious diseases, Novosibirsk, Tseris, 2011, 172 p. (in Russian).


Review

For citations:


Generalov V.M., Safatov A.S., Kruchinina M.V., Gromov A.A., Buryak G.A., Generalov K.V., Kruchinin V.N. Dielectric properties of the human red blood cell. Izmeritel`naya Tekhnika. 2020;(7):62-67. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-7-62-67

Views: 147


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)