Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Effciency of application of the phase-chronometric method and neurodiagnostics for monitoring the degradation of rolling bearings during operation

https://doi.org/10.32446/0368-1025it.2020-7-43-50

Abstract

The paper presents an alternative approach to metrological support and assessment of the technical condition of rolling bearings in operation. The analysis of existing approaches, including methods of vibration diagnostics, envelope analysis, wavelet analysis, etc. Considers the possibility of applying a phase-chronometric method for support on the basis of neurodiagnostics bearing life cycle on the basis of the unified format of measurement information. The possibility of diagnosing a rolling bearing when analyzing measurement information from the shaft and separator was evaluated.

 

About the Authors

A. S. Komshin
Bauman Moscow State Technical University
Russian Federation

Aleksander S. Komshin

Moscow



K. G. Potapov
Bauman Moscow State Technical University
Russian Federation

Konstantin G. Potapov

Moscow



V. I. Pronyakin
Bauman Moscow State Technical University
Russian Federation

Vladimir I. Pronyakin

Moscow



A. B. Syritskii
Bauman Moscow State Technical University
Russian Federation

Anthony B. Syritskii

Moscow



References

1. Kumar A., Kumar R., Journal of Nondestructive Evaluation, 2019, vol. 38, p. 5. https:/doi.org/10.1007/s10921-018-0543-8

2. Dybała J., Zimroz R., Applied Acoustics, 2014, vol. 77, pp. 195–203. https:/doi.org/10.1016/j.apacoust.2013.09.001

3. Nikolaou N. G., Antoniadis I. A., NDT&E Int., 2002, vol. 35, pp. 197–205. https:/doi.org/10.1016/j.apacoust.2013.09.001

4. Zheng L., Xiang Y., Sheng C., Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, vol. 41, p. 505. https:/doi.org/10.1007/s40430-019-2011-5

5. Prieto M. D., Cirrincione G., Espinosa A. G., IEEE Transactions on Industrial Electronics, 2013, vol. 8, pp. 3398–3407. https:/doi.org/10.1109/TIE.2012.2219838

6. Attoui I., Oudjani B., Boutasseta N. et al., International Journal of Advanced Manufacturing Technology, 2020, vol. 106, pp. 3409–3435. https:/doi.org/10.1007/s00170-019-04729-4

7. Randall R. B., Antoni J., Mechanical systems and signal processing, 2011, vol. 25 (2), pp. 485–520. https:/doi.org/10.1016/j.ymssp.2010.07.017

8. Chatterton S., Pennacchi P., Vania A., Borghesani P., Proceedings of the 9th IFToMM International Conference on Rotor Dynamics. Mechanisms and Machine Science, vol. 21, Springer, Cham, 2015.

9. Cotogno M., Cocconcelli M., Rubini R., Advances in Condition Monitoring of Machinery in Non-Stationary Operations. Lecture Notes in Mechanical Engineering, Springer, Berlin, Heidelberg, 2014.

10. Borghesani P., Ricci R., Chatterton S., Pennacchi P., Advances in Condition Monitoring of Machinery in Non-Stationary Operations. Lecture Notes in Mechanical Engineering, Springer, Berlin, Heidelberg, 2014.

11. Ying Y., Li J., Li J., Chen Z., Advanced Hybrid Information Processing. ADHIP 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 219, Springer, Cham, 2018.

12. Tikhonov R. S., Starostin N. P., Mekhanika, resurs i diagnostika materialov i konstrukcij, 2016, рр. 83–83 (in Russian).

13. K orotkevich S. V., Kholodilov O. V., Kravchenko V. V., Chikunov V. V., Belonogiy D. Yu., Remont. Vosstanovlenie. Modernizaciya, 2015, no. 11, pp. 24–31 (in Russian).

14. M ishin V. V., Pashmentova A. S., Sovremennye materialy, tekhnika i tekhnologii, 2017, no. 1 (9) (in Russian).

15. Kozochkin M. P., Sabirov F. S., Bogan A. N., Myslivtsev K. V., STIN, 2013. № 1. С. 21–25 (in Russian).

16. Yurkevich V. V., Lushnikov P. V., Stankoinstrument, 2015, no. 1, pp. 97–99 (in Russian).

17. Kudryavtsev E. A., Zheleznodorozhnyj transport, 2015, no. 12, pp. 51–53 (in Russian).

18. Kudryavtsev E. A., Remont. Vosstanovlenie. Modernizaciya, 2013, no. 6, pp. 26–31 (in Russian).

19. Kozochkin M. P., Sabirov F. S., Measurement Techniques, 2017, vol. 59, no. 12, pp. 1310–1315. https:/doi.org/10.1007/s11018-017-1134-2

20. Pronyakin V. I., Kudryavtsev E. A., Komshin A. S., Potapov K. G., Izvestiya vysshih uchebnyh zavedenij. Mashinostroenie, 2017, no. 3 (684) (in Russian).

21. Kudryavtsev E. A., Komshin A. S., Potapov K. G., Pronyakin V. I., Remont. Vosstanovlenie. Modernizaciya, 2017, no. 4, pp. 18–24 (in Russian).

22. Kiselev M. I., Komshin A. S., Syritskii A. B. , Measurement Techniques, 2018, vol. 60, no. 11, pp. 1081–1086. https:/doi.org/10.1007/s11018-018-1321-9

23. Komshin A. S., Measurement Techniques, 2013, vol. 56, no. 6, pp. 850–855. https:/doi.org/10.1007/s11018-013-0295-x

24. Syritskii A. B., Measurement Techniques, 2016, vol. 59, no. 6, pp. 595–599. https:/doi.org/10.1007/s11018-016-1014-1

25. Komshin A. S., Orlova, S. R., Measurement Tec hniques, 2016, vol. 59, no. 6, pp. 589–594. https:/doi.org/10.1007/s11018-016-1013-2

26. Kiselev M. I., Pronyakin V. I., Tulekbaeva A. K., IOP Conference Series: Materials Science and Engineering, 2018, vol. 312, no. 1, p. 012012. https:/doi.org/10.1088/1757-899X/312/1/012012I

27. Leontiev A. I., Burtsev S. A., Doklady Physics, 2016, vol. 61, no. 11, pp. 543–545. https:/doi.org/10.1134/S1028335816110100

28. Poshekhonov R. A., Arutyunyan G. A., Pankratov S. A., Osipkov A. S., Onishchenko D. O., Leontyev A. I., Semiconductors, 2017, vol. 51 (8), pp. 981–985. https:/doi.org/10.1134/S1063782617080255

29. Lavrinenko V., Polyakova A., Polyakov A., MATEC Web of Conferences, 2018, vol. 224, p. 02074. https:/doi.org/10.1051/matecconf/201822402074

30. Wiener N., Cybernetics in history. Theorizing in communication: Readings across traditions, 1954, рр. 267–273.

31. Golubev Yu. F., Nejrosetevye metody v mekhatronike, Moscow, Izdatelstvo Moskovskogo gosudarstvennogo universiteta im. M. V. Lomonosova Publ., 2007, 157 p. (in Russian).

32. Keras: The Python Deep Learning Library, available at: http:/www.keras.oi/(accessed:20.02.2020).

33. TensorFlow: An end-to-end open source machine learning platform, available at: http://www.tensorflow.org(accessed:20.02.2020).

34. Krauss M., & Woschni E. G., Messinformationssysteme:Kennfunktionen, Gütekriterien, Optimierung, VEB, 1975.

35. Novitsky P. V., Zograf I. A., Ocenka pogreshnostej rezul’tatov izmerenij, 2 еd., Leningrad, Energoatomizdat Publ., 1991 (in Russian).

36. Slepova S. V., Osnovy tochnosti izmeritel’nyh priborov: uchebnoe posobie, Chelyabinsk, YUUrGU Publ., 2008. 192 p. (in Russian).


Review

For citations:


Komshin A.S., Potapov K.G., Pronyakin V.I., Syritskii A.B. Effciency of application of the phase-chronometric method and neurodiagnostics for monitoring the degradation of rolling bearings during operation. Izmeritel`naya Tekhnika. 2020;(7):43-50. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-7-43-50

Views: 139


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)