Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Technique for flowrate calculation of cryogenic two-phase flows in Venturi flowmeters without separation.

https://doi.org/10.32446/0368-1025it.2020-7-34-42

Abstract

A technique for calculating the flowrate of cryogenic two-phase flows in separationless flowmeters based on a venturi is proposed. The technique takes into account the equation of state of the two-phase medium, that is changes in density, mass vapour quality and temperature of cryogens two-phase flows against pressure in the venturi. It is shown that without an accounting of the flow parameters evolution, an additional flowrate error appears and therefore it is impossible to correctly determine the sensitivity and measurement range of the flowmeter. The most optimal measurement range of the pressure drop is chosen as well as a method of the flowrate measuring by the temperature difference across the venturi is proposed. The problem of determining the flowrate of two-phase cryogenic flows is topical for accelerator, aerospace and gas-transport engineering.

About the Authors

I. A. Arkharov
The Bauman Moscow State Technical University
Russian Federation

Ivan A. Arkharov

Moscow



I. D. Kakorin
Joint Institute for Nuclear Research
Russian Federation

Igor D. Kakorin

Dubna



References

1. . Khodzhibagiyan H. G. et al., Phys. Procedia, 2 012, vol. 36, pp. 1083–1086. https:/doi.org/10.1016/j.phpro.2012.06.110

2. Augustin I., Nucl. Instrum. Meth. B, 2007, vol . 261, pp. 1014–1017. https:/doi.org/doi.org/10.1016/j.phpro.2012.06.110

3. Khodzhibagiyan H. G., Fischer E., Kovakenko A.D., IEEE Trans. Appl. Supercond., 2006, vol. 16, no. 2, pp. 411–414. https:/doi.org/10.1109/TASC.2005.864339

4. Lebrun P., Cryogenics, 1994, vol. 34, supp. 1,pp. 1–8. https:/doi.org/10.1016/S0011-2275(05)80003-7

5. Norris B. et al., Adv. Cryog. Eng., 1993, vol.39B, pp. 1185–1192. https:/doi.org/10.1007/978-1-4615-2522-6_145

6. Grigory V. Trubnikov et al. Proceedings of 11t h European Particle Accelerator Conference, Genoa, Italy, June 23–27, 2008, vol. 8, pp. 2581–2583.

7. Detlef Reschke. Proceedings of 8th Workshop on RF Superconductivity, Abano Terme, Padua, Italy, October 6–10, 1997, vol. 2, pp. 385–396.

8. Grechko A. G. et al., RF Patent no. 2108567 (1 0.04.1998).

9. Ashmore R. H., Two-phase cryogenic fl owmeter: a proof of concept. Master’s thesis. (The Florida State University, Florida, 2006).

10. Foster-Miller creates fi rst accurate fl ow meter for cryogenic liquids, available at: http://mstarlabs.com/apeng/fosterm.html(accessed:11.01.2018).

11. Moerk J. S. et al., US Patent no. 5861755 (19 January 1999).

12. Arkharov A. M. et al., Adv. Cryog. Eng., 1998, vol. 43, pp. 795–802. https:/doi.org/10.1007/978-1-4757-9047-4_99

13. Lovell T. W., Dresar N. T. V., AIP Conf. Proc., 2006, vol . 823, pp. 273–280. https:/doi.org/10.1063/1.2202426

14. Filippov Yu. P., Panferov K. S., Cryogenics, 2 011, vol. 51, no. 11–12, pp. 640–645. https:/doi.org/10.1016/j.cryogenics.2011.09.013

15. Filippov Yu. P., Kakorin I. D., Kovrizhnykh A. M., Cryogenics, 2013, vol. 57, pp. 55–62. https:/doi.org/10.1016/j.cryogenics.2013.05.004

16. Filippov Yu. P., Kakorin I. D., Cryogenics, 20 16, vol. 79, pp. 63–73. https:/doi.org/10.1016/j.cryogenics.2016.07.015

17. Arp V. D., McCarty R. D., Friend D. Thermophys ical Properties of Helium-4 from 0.8 to 1500 K with Pressures to 2000 MPa. NIST Technical Note 1334 (revised). National Institute of Standards and Technology, 1998. 152 p.

18. Lemmon E. W. et al., NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, 2018.

19. Ortiz Vega, Diego O., A new wide range equatio n of state for helium-4: Ph.D Thesis. (Texas, A&M University, 2013).

20. Schmidt R., Wagner W., Fluid Phase Equilib., 1 985, vol. 19, no. 3, pp. 175–200. https:/doi.org/10.1016/0378-3812(85)87016-3

21. Jacobsen R. T., Stewart R. B., Jahangiri M., I nt. J. Thermophys., 1986, vol. 7, pp. 503–511. https:/doi.org/10.1007/BF00502385

22. Jahangiri M. et al., Int. J. Thermophys., 1986 , vol. 7, pp. 491–501. https:/doi.org/10.1007/BF00502384

23. Alexeyev A. I., Filippov Yu. P., Mamedov I. S. , Cryogenics, 1991, vol. 31, no. 5, pp. 330–337. https:/doi.org/10.1016/0011-2275(91)90105-6

24. Filippov Yu. P., Cryogenics, 1999, vol. 39, no . 1, pp. 59–68. https:/doi.org/10.1016/S0011-2275(98)00114-3

25. Zivi S. M., J. Heat Transfer, 1964, vol. 86, n o. 2, pp. 247–251. https:/doi.org/10.1115/1.3687113

26. Trubnikov G. V., Uskoritel’nyi kompleks nakopi tel’nykh kolets na vstrechnykh puchkakh tyazhelykh ionov NICA v OIYaI, available at: http://www.myshared.ru/slide/661153(accessed:26.12.2019).

27. Khodzhibagiyan H. G. et al., IEEE Trans. Appl. Supercond., 2011, vol. 21, no. 6, pp. 1795–1798. https:/doi.org/10.1109/TASC.2010.2081334

28. Dedikov Yu. A., Filippov Yu.P. Proceedings of 1 7th International Conference on High-Energy Accelerators, Dubna, Russian Federation, September 7–12, 1998, pp. 305–307.

29. Zhang J. et al., Appl. Mech. Mater., 2011, vol . 80–81, pp. 698–703. https:/doi.org/10.4028/www.scientifi c.net/AMM.80-81.698


Review

For citations:


Arkharov I.A., Kakorin I.D. Technique for flowrate calculation of cryogenic two-phase flows in Venturi flowmeters without separation. Izmeritel`naya Tekhnika. 2020;(7):34-42. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-7-34-42

Views: 116


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)