

Prospects of high sensitivity atomic interferometer development for current gravimetry
https://doi.org/10.32446/0368-1025it.2020-7-9-12
Abstract
A review of the experimental results achieved in the process of atomic fountain clocks construction at “VNIIFTRI” is presented. A possibility of the application of achieved results to the development of a sensitive interferometer (gravimeter) based on cold rubidium atoms is analyzed. The relevance of the study is in the estimation of perspective of interferometer (gravimeter) based on cold atoms for absolute measurements of local free-falling constant development. Physical fundamentals of atomic gravimeter’s operation are described. A comparison between atomic gravimeter and atomic quantum frequency standard based on cold atoms is done. Engineering solutions, that are necessary for building atomic gravimeter with required sensitivity of free-falling acceleration measurement are suggested. In order to build a gravimeter with a sensitivity reaching 1 μGal/Hz1/2 the estimations of laser phase noise, residual gas pressure in vacuum system and magnetic shielding system’s parameters are made.
About the Authors
M. S. AleynikovRussian Federation
Mikhail S. Aleynikov
Mendeleevo, Moscow Region
V. N. Baryshev
Russian Federation
Vyatchaslav. N. Baryshev
Mendeleevo, Moscow Region
I. Y. Blinov
Russian Federation
Igor Y. Blinov
Mendeleevo, Moscow Region
D. S. Kupalov
Russian Federation
Dmitri S. Kupalov
Mendeleevo, Moscow Region
G. V. Osipenko
Russian Federation
Georgii V. Osipenko
Mendeleevo, Moscow Region
References
1. Marson I., and Faller J. E., Journal of physics E: Scientifi c Instruments, 1986, vol. 19, pp. 22–32. https://doi.org/10.1088/0022-3735/19/1/002
2. Novak P., Surv. Geophys., 2010, vol. 31, pp. 1–21. https://doi.org/10.1007/s10712-009-9077-z
3. Hinderer J., Florsch N., Makinen J., Legros H., and Faller J. E., Geophysical Journal International, 1991, vol. 106, pp. 491–497. https://doi.org/10.1111/j.1365-246X.1991.tb03907.x
4. Paik H. J., Classical and Quantum Gravity, 1994, vol. 11A, pp. 133–144. https://doi.org/10.1088/0264-9381/11/6A/010
5. Boedecker G., Metrologia, 2002, vol. 39, pp. 429–433. https://doi.org/10.1088/0026-1394/39/5/4
6. Schwarz J. P., Robertson D. S., Niebauer T. M., Faller J. E., Science, 1998, vol. 282, pp. 2230–2234. https://doi.org/10.1126/science.282.5397.2230
7. Savage J. C., Journal of Geophysical Research, 1984, vol. 89, pp. 1945–1952. https://doi.org/10.1029/JB089iB03p01945
8. Forward R. L., The Moon and the Planets, 1980, vol. 22, pp. 419–433. https://doi.org/10.1007/BF00897287
9. Peters A., Chung K. Y., and Chu S., Metrologia, 2001, vol. 38, pp. 25–61. https://doi.org/10.1088/0026-1394/38/1/4
10. Le Gouet J., Mehlstaubler T., Kim J., Merlet S., Clairon A., Landragin A., and Pereira Dos Santos F., Applied Physics B, 2008, vol. 92, pp. 133–144. https://doi.org/10.1007/s00340-008-3088-1
11. Domnin Yu. S., Elkin G. A., Novoselov A. V., Baryshev V. N., Kopylov L. N., Malyshev Y. M., Pal’chikov V. G., Quantum Electronics, 2004, vol. 34, no. 12, pp. 1084–1095. https://doi.org/10.1070/QE2004v034n12ABEH002749
12. Domnin Yu. S., Baryshev V. N., Boiko A. I., Elkin G. A., Novoselov A. V., Kopylov L. N., Kuplaov D. S., Measurement Techniques, 2013, vol. 55, no. 10, pp. 1155–1162. https://doi.org/1007/s11018-012-0102-0
13. Domnin Y. S., Baryshev V. N., Boiko A. I., Elkin G. A., Novoselov A. V., Kopylov L. N., Kuplaov D. S., Measurements World, 2012, vol. 134, pp. 30–34.
14. Kasevich M., and Chu S., Phys. Rev. Lett., 1991, vol. 67, pp. 181–184. https://doi.org/10.1103/PhysRevLett.67.181
15. Schmidt M., Senger A., Hauth M., Freier C., Schkolnik V.,
16. and Peters A., Gyroscopy and Navigations, 2011, vol. 2, pp. 170–177. https://doi.org/10.1134/S2075108711030102
17. Zhou L., Xiong Z. Y., Yang W., Tang B., Peng W. C., Hao K., Li R. B., Liu M., Wang J., and Zhan M. S., General Relativity and Gravitation, 2011, vol. 43, pp. 1931–1942. https://doi.org/10.1007/s10714-011-1167-9
Review
For citations:
Aleynikov M.S., Baryshev V.N., Blinov I.Y., Kupalov D.S., Osipenko G.V. Prospects of high sensitivity atomic interferometer development for current gravimetry. Izmeritel`naya Tekhnika. 2020;(7):9-12. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-7-9-12