

Analysis of dependence between magnetic properties of granulated ferromagnetic specimens and relation of its length to diameter
https://doi.org/10.32446/0368-1025it.2020-6-46-51
Abstract
Paper studies the problems about experimental determining magnetic parameters of nonuniform granular magnetics. It has been noted that the existing shortage of direct and (or) indirect experimental data on the magnetic properties of granular ferromagnetic specimens with different values of a relative length, in particular, has a negative impact on the validity of the requirements and decisions to create and ensure the performance of relevant functional elements, movable operating elements of various equipments and devices. By the example of cylindrical specimens of balls with the range of relative length 1–16 within the framework of effective medium macromodel the dependences of induction, magnetic permeability, susceptibility, magnetization and field intensity have been obtained. It has been shown that in the range of field intensity 9–47 kA/m values of induction and magnetization of investigating specimens increase, that indicates the absence of magnetic saturation of such granular (as opposed to solid) magnetics. And this is the case at almost stable values of magnetic susceptibility and permeability. Obtained results are useful in designing movable operating elements of various equipments and devices.
About the Authors
A. V. SandulyakRussian Federation
Alexander V. Sandulyak
Moscow
R. Y. Tkachenko
Russian Federation
Roman Y. Tkachenko
Moscow
D. A. Sandulyak
Russian Federation
Darya A. Sandulyak
Moscow
M. N. Polismakova
Russian Federation
Maria N. Polismakova
Moscow
A. A. Sandulyak
Russian Federation
Anna A. Sandulyak
Moscow
V. A. Ershova
Russian Federation
Vera A. Ershova
Moscow
References
1. Bjork R., Zhou Z., Journal of Magnetism and Magnetic Materials, 2019, vol. 476, рр. 417–422. DOI:10.1016/j.jmmm.2019.01.005
2. Diguet G., Beaugnon E., Cavaillé J. Y., Journal of Magnetism and Magnetic Materials, 2010, vol. 322, рр. 3337–3341. DOI:10.1016/j.jmmm.2010.06.020
3. Ilyin N. A., Klimov A. A., Tiercelin N., Pernod P., Mishina E. D., Gaponov M. S., Brekhov K. A., Sigov A. S., Preobrazhensky V. L., Russian Technological Journal, 2019, vol. 7, no. 3, рр. 50–58. DOI:10.32362/2500-316X-2019-7-3-50-58
4. Eskandarpour A., Iwai K., Asai S., IEEE Transactions on Applied Superconductivity, 2008, vol. 19 (2), no. 4799183, рр. 84–95. DOI:10.1109/TASC.2009.2014567
5. Mishima F., Terada T., Akiyama Y., Izumi Y., Okazaki H., Nishijima S., IEEE Transactions on Applied Superconductivity, 2008, vol. 18 (2), no. 4520245, рр. 824–827. DOI:10.1109/TASC.2008.920830
6. Sandulyak A. A., Ershova V. A., Sandulyak A. V., Tyazheloye mashinostroyeniye, 2007, no. 4, рр. 17–22 (in Russian).
7. Sandulyak A. A., Svistunov D. I., Polismakova M. N., Sandulyak A. V., Ershova V. A., Ershov D. V., Sandulyak D. A., Zakonodatelnaja i priprikladnaya metrologiya, 2010, no. 3, рр. 35–40 (in Russian).
8. Mattei J. L., Minot O., Le Floc’h M., Journal of Magnetism and Magnetic Materials, 1995, vol. 140–144 (3), рр. 2189–2190. DOI:10.1016/0304-8853(94)00624-5
9. Sandulyak A. A., Sandulyak A. V., Ershova V. A., Pamme N., Ngmason B., Iles A., Journal of Magnetism and Magnetic Materials, 2017, vol. 441, рр. 724–734. DOI:10.1016/j.jmmm.2017.06.027
10. Sandulyak A. A., Ershova V. A., Sandulyak D. A., Sandulyak A. V., Polismakova M. N., Journal of Engineering Physics and Thermophysics, 2017, vol. 90, no. 2, рр. 329–335. DOI:10.1007/s10891-017-1571-4
11. Sandulyak D. A., Sandulyak A. A., Kiselev D. O., Sandulyak A. V., Polismakova M. N., Kononov M. A., Ershova V. A., Measurement Techniques, 2017, vol. 60, no. 9, рр. 928–933. DOI:10.1007/s11018-017-1295-z
12. Anhalt M., Journal of Engineering Physics and Thermophysics, 2008, vol. 320, рр. e366–e369. DOI:10.1016/j.jmmm.2008.02.072
13. Yashin M. M., Mirzokulov H. B., Russian Technological Journal, 2019, vol. 7, no. 4, рр. 92–100. DOI:10.32362/2500-316X-2019-7-4-92-100
14. Chen D. X., Pardo E., Zhu Y.-H., Xiang L.-X., Ding J.-Q., Journal of Magnetism and Magnetic Materials, 2018, vol. 449, рр. 447–454. DOI:10.1016/j.jmmm.2017.10.069
15. Yaglidere I., Gunes E. O., IEEE Transactions on Magnetics, 2018, vol. 54, no. 2, рр. 400–411. DOI:10.1109/TMAG.2017.2765624
16. Im S. H., Park G. S., Proceeding of the 21st International Conference on Electrical Machines and Systems (ICEMS), 7–10 October 2018, Jeju, South Korea, 2018, рр. 2629–2632. DOI:10.23919/ICEMS.2018.8548969
17. Wang M., Feng J., Shi Y., Shen M., IEEE Transactions on Industrial Electronics, 2019, vol. 66, no. 3, рр. 1842–1851. DOI:10.1109/TIE.2018.2840485
18. Caciagli A., Baars R. J., Philipse A. P., Kuipers B. W. M., Journal of Magnetism and Magnetic Materials, 2018, vol. 456, рр. 423–432. DOI:10.1016/j.jmmm.2018.02.003
19. Marinica O. M., Journal of Nanomaterials, 2017, 9 p. DOI:10.1155/2017/5407679
20. Périgo E. A., Weidenfeller B., Kollár P., Füzer J., Applied Physics Review, 2018, vol. 5, р. 031301. DOI:10.1063/1.5027045
21. Sandulyak A. V., Sandulyak D. A., Ershova V.A., Tkachenko R. Y., Sandulyak A. A., Polismakova M. N., Fundamental and Applied Problems of Engineering and Technology, 2019, vol. 3 (335), рр. 121–133.
Review
For citations:
Sandulyak A.V., Tkachenko R.Y., Sandulyak D.A., Polismakova M.N., Sandulyak A.A., Ershova V.A. Analysis of dependence between magnetic properties of granulated ferromagnetic specimens and relation of its length to diameter. Izmeritel`naya Tekhnika. 2020;(6):46-51. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-6-46-51