

Improvement of methods and means of thermal imagers verification and calibration
https://doi.org/10.32446/0368-1025it.2020-6-33-39
Abstract
This paper suggests the verification and calibration method of thermal imagers that consists in comparison of temperature readings obtained by contact and thermal imaging method. The experimental setup has been developed to confirm the reliability of the proposed method. The main element of experimental setup is an emitting surface in the form of rectangular plate that measures 330×200×4 mm. The plate is covered with paint which emissivity factor is not less than 0,96. The paper presents the results of temperature field calculations on the plate emitting surface. The temperature field of the plate emitting surface has been determined by the contact method using chromel-alumel thermocouples and thermal imaging method. As a result of the obtained temperature values analysis, it has been concluded that if the plate emitting surface temperatures close to 50 °C, the heat exchange of the plate with the ambient air plays a significant role. The air heaters are applied in order to reduce the heat flows dissipation from the plate emitting surface into the environment. The heaters are two aluminum-magnesium alloy plates attached to the end face of the emitting surface. The metal heat exchangers – coils are installed on the surfaces of the plates and connected by hoses to the liquid thermostat. One of the plates heats the air flowing around the emitting surface, and another one prevents the emission thermal expansion into the environment. As a result of heaters application, the heat exchange intensity of a plate radiating surface with environment decreases. Moreover, recommendations about the choice of heaters sizes have been given. The main advantages of the method proposed are the following: ensuring high isothermic of the emitting surface throughout the height of the plate; accuracy of the temperature maintaining at a given level; reducing the device transition time to steady-state regime.
About the Authors
V. V. GerasyutenkoRussian Federation
Victoria V. Gerasyutenko
St. Petersburg
A. V. Sharkov
Russian Federation
Alexander V. Sharkov
St. Petersburg
V. A. Korablev
Russian Federation
Vladimir A. Korablev
St. Petersburg
D. A. Minkin
Russian Federation
Dmitry A. Minkin
St. Petersburg
References
1. . Gogolinskij K. V., Sil’d Yu. A., V mire nerazrushayushchego kontrolya, 2017, no. 1 (20), pp. 21–25 (in Russian).
2. Volkov S. P., Nikonenko V. A., Kontrol’. Diagnostika, 2007, no. 8, pp. 63–70 (in Russian).
3. Sil’d Yu. A., Ivanova M. A., Nikonenko V. A., Measurement Techniques, 2004, vol. 47, no. 4, pp. 389–392. DOI:10.1023/B:METE.0000033697.57678.4f
4. Sil’d Yu. A., Matveev M. S., Pohodun A. I., Vizulajnen E. V., Instruments, 2008, no. 10 (100), pp. 46–52.
5. Sharganov K. A., Sil’d Yu. A., Vizulajnen E. V., Vestnik Metrologa, 2017, no. 2, pp. 19–22 (in Russian).
6. Grgić G., Pušnik I., International Journal of Thermophysics, 2011, vol. 32, no. 1–2, pp. 237–247. DOI:10.1007/s10765-011-0932-z
7. Vendt R., Jaanson P., et al., Proceedings of SPIE – The International Society for Optical Engineering, 2009, pp. 729902-5. DOI:10.1117/12.818423
8. Miklavec A., Puŝnik I., Batagelj V., Drnovŝek J., Measurement Science and Technology, 2013, vol. 24, no. 2, p. 025001. DOI:10.1088/0957-0233/24/2/025001
9. Hartmann J., Hollandt J., et al., Experimental methods in the physical sciences, 2009, vol. 42, no. C, pp. 241–295. DOI:10.1016/S1079-4042(09)04206-4
10. Lagüela S., Gonzalez H. et al., Infrared Physics & Technology, 2011, vol. 54, no. 2, pp. 92–99. DOI:10.1016/j.infrared.2011.01.002
11. Korablev V. A., Minkin D. A., Sharkov A. V., Prirodnye i tekhnogennye riski (fi ziko-matematicheskie i prikladnye aspekty), 2014, no. 3 (11), pp. 42–50 (in Russian).
12. Korablev V. A., Sharkov A. V., Minkin D. A., Prirodnye i Tekhnogennye riski (fi ziko – matematicheskie i prikladnye aspekty), 2016, no. 2 (18), pp. 42–46 (in Russian).
13. Korablev V. A., Sharkov A. V., Minkin D. A., Problemy upravleniya riskami v tekhnosfere, 2015, no. 4 (36), pp. 43–49 (in Russian).
14. Mosharov V. E., Radchenko V. N, Senyuev I. V., Proceedings of the XXIX Scientifi c And Technical conference of Aerodynamics, Zhukovsky, Moscow region, March 1–2, 2018, Zhukovsky, Central Aerohydrodynamic Institute Publ., 2018, р. 161.
15. Gilbert Gaussorgues, La Thermographie Infrarouge. Principes – Technologie – Applications, Paris, 1984.
16. Dul’nev G. N., Tihonov S. V., Osnovy teorii teplomassoobmena, Saint Petersburg, Saint Petersburg State University of Information Technologies Mechanics and Optics Publ., 2010,93 p. (in Russian).
17. Miheev M. A., Miheeva I. M. Osnovy teploperedachi, Moscow, Izdatel’skij dom “BASTET” Publ., 2010, 344 p. (in Russian).
18. Isachenko V. P., Osipova V. A., Sukomel A. S., Teploperedacha, Moscow, Energoizdat Publ., 1981, 416 p. (in Russian).
19. Martynenko O. G., Sokovishin Yu. A., Svobodno-konvektivnyj teploobmen na vertikal’noj poverhnosti. Granichnye
20. usloviya II roda, Moscow, Nauka i tekhnika Publ., 1977, 216 p. (in Russian).
21. Schaub M., Kriegel M., Brandt. S., International Journal of Heat and Mass Transfer, 2019, vol. 136, pp. 1186–1198. DOI:10.1016/j.ijheatmasstransfer.2019.03.089
Review
For citations:
Gerasyutenko V.V., Sharkov A.V., Korablev V.A., Minkin D.A. Improvement of methods and means of thermal imagers verification and calibration. Izmeritel`naya Tekhnika. 2020;(6):33-39. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-6-33-39