

Improving the measurement accuracy of magnetometer algorithmic correction of its instrumental errors
https://doi.org/10.32446/0368-1025it.2020-5-50-57
Abstract
In many applications of the magnetic method it is advantageous to have information about the geomagnetic field strength and its gradients. The direct measurement of gradients does not depend on geomagnetic variations or normal field values. Special equipment is required for this purpose. The results of the development and construction of a three-component magnetometergradiometer are presented. The device is designed to measure on the earth's surface the absolute values of the three components of the geomagnetic field vector and the corresponding three components of the gradient. Installation of additional measuring sensors in the device – accelerometers, allows you to calculate the orientation of these vectors in space. The device of a magnetometergradiometer is described, its functional scheme and operating principle are presented. A set of instrumental errors that occur in the manufacture of three-axis systems of ferrosondesand accelerometers for measuring the components of the geomagnetic field strength and determining the orientation of the device is considered. The paper presents a method for determining instrumental errors and algorithmic correction of information signals coming from measuring sensors to signifi cantly improve the accuracy of measurements. Examples of field tests of the device are given. The presented magnetometer-gradiometer can be used for accurate localization of previously identified ore bodies and determining the details of their structure.
About the Authors
Yu. G. AstrakhantsevRussian Federation
Yury G. Astrakhantsev
Yekaterinburg
N. A. Beloglazova
Russian Federation
Nadezhda A. Beloglazova
Yekaterinburg
References
1. Instruktsiya po magnitorazvedke (nazemnaya magnitnaya s”emka, aehromagnitnaya s”emka, gidromagnitnaya s”emka), Leningrad, Nedra Publ., 1981, 263 p. (in Russian).
2. Logachev A. A., Zakharov V. P., Magnitorazvedka. Izd. 5-e, pererab. i dop, Leningrad, Nedra Publ., 1979, 351 p. (in Russian).
3. Zvezhinskii S. S., Parfentsev I. V., Spetstekhnika i svyaz’, 2009, no. 1, pp. 16–29 (in Russian).
4. Milovzorov D. G., Yasoveev V. K., Optoelectronics, Instrumentation and Data Processing, 2017, vol. 53, no. 4, pp. 388– 394. DOI:10.3103/S8756699017040112
5. Krapivskii E. I., Lyubchik A. N., Belikov A. A., Problemy osvoeniya nedr v 21 veke glazami molodykh, Proceedings of 5th International school of young scientists and specialists, Moscow, November 11–14, 2008. Moscow, Institute for Integrated Subsoil Development Problems RAS, 2008, pp. 350–353.
6. Dubov A. A., Diagnostika oborudovaniya i konstruktsii s ispol’zovaniem magnitnoi pamyati metalla, Proceedings of 2nd International conference, Moscow, February 26–28, 2001. Moscow, Energodiagnostika, 2001, pp. 51–64 (in Russian).
7. Astrakhantsev Yu. G., Beloglazova N. A., Kompleksnaya magnitometricheskaya apparatura dlya issledovaniya sverkhglubokikh i razvedochnykh skvazhin: monografya, Ekaterinburg: Ural Branch of RAS Publ., 2012, 120 p. (in Russian).
8. Astrakhantsev Yu. G., Beloglazova N. A., Radiotekhnika, 2016, no. 7, pp. 144–152 (in Russian).
9. Astrakhantsev Yu. G., Beloglazova N. A., Praktika priborostroeniya, 2003, no. 1. pp. 17–21 (in Russian).
10. Milovzorov D. G., Loginova T. M., Izmerenie, kontrol’, informatizatsiya, Proceedings of 9th International Scientifi c and Practical conference, Barnaul, June 3–4, 2009. Barnaul, Altai State Technical University named after I. I. Polzunova, 2009, pp. 75–76 (in Russian).
11. Milovzorov G. V., Milovzorov D. G., Yasoveyev V. Kh., Redkina T. A., Italian Science Review, 2014, no. 18 (9), pp. 53–60.
12. Redkina T. A., Milovzorov D. G., Sadrutdinov R. R., Bulletin of the Izhevsk State Technical University, 2014, no. 3, pp. 132–135 (in Russian).
13. Redkina T. A., Milovzorov D. G., Melnikov V. P., Innovatsii v nauke, tekhnike i tekhnologiyakh, Collection of reports Al-Russian Scientifi c and Practical Conference, Izhevsk, April 28–30, 2014. Izhevsk, Udmurt State University, 2014, pp. 218–219 (in Russian).
14. Astrakhantsev Yu. G., Sherendo T. A., Nekhoroshkov V. L., Shulina V. V., Potapov A. P., Ispol’zovanie nanokristallicheskikh i amorfnykh splavov v skvazhinnykh ferrozondovykh magnitometrakh: Collection of scientifi c papers, Ekaterinburg, Ural Branch of RAS Publ., 1999, pp. 383–390 (in Russian).
15. Beloglazova N. A., Praktika priborostroeniya, 2003, no. 2, pp. 68–71 (in Russian).
16. Zvezhinskii S. S., Parfentsev I. V., Spetstekhnika i svyaz’, 2008, no. 2, pp. 8–17 (in Russian).
17. Khurana K., Kepko L., Kivelson M. G., Geophysical Monograph Series, Washington DC, 1998, pp. 311–316. DOI:10.1029/GM103p0311
18. Astrakhantsev Yu. G., Beloglazova N. A., Pribory i sistemy razvedochnoi geofi ziki: Metrologiya v geofi zike, 2006, vol. 17, no. 3, pp. 60–62 (in Russian).
Review
For citations:
Astrakhantsev Yu.G., Beloglazova N.A. Improving the measurement accuracy of magnetometer algorithmic correction of its instrumental errors. Izmeritel`naya Tekhnika. 2020;(5):50-57. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-5-50-57