Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The new method for longitudinal relaxation time control of f owing liquid in the entire range of its expenditure measuring

https://doi.org/10.32446/0368-1025it.2020-5-36-42

Abstract

The problems of the condition control of flowing liquid during its use in different industries, energy and agriculture are reviewed. The devices of the flowing liquid condition control whose operating principle is based on the phenomenon of nuclear magnetic resonance are presented. This devices do not have the disadvantages and limitations of use inherent in optical analyzers and flowing refractometers. At using controls based on the phenomenon of nuclear magnetic resonance the controlled parameters are the relaxation times of the flowing fluid, in particular, the greatest difficulties arise when measuring the longitudinal relaxation time. The method for control of longitudinal relaxation time T1 of flowing liquid in the entire range of measuring its expenditure is proposed. To implement a new method the design of nuclear magnetic flowmeter-relaxometer is developed. The obtained data are compared with the measurement results of values T1 for liquid media being in a stationary state are recivedon industrial nuclear magnetic relaxometer and is determined them coincidence within the measurement error.

About the Authors

V. V. Davydov
Peter the Great Saint Petersburg Polytechnic University; All-Russian Research Institute of Phytopathology
Russian Federation

Vadim V. Davydov

St. Petersburg; B. Vyazyomy, Moscow Region



N. S. Myazin
Peter the Great Saint Petersburg Polytechnic University
Russian Federation

Nikita S. Myazin

St. Petersburg



S. S. Makeev
Peter the Great Saint Petersburg Polytechnic University
Russian Federation

Sergey S. Makeev

St. Petersburg



V. I. Dudkin
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Russian Federation

Valentin I. Dudkin

St. Petersburg



References

1. . Lesnikov E. V., Balakhanov D. M., and Dobrovol’skii V. I., Measurement Techniques, 2017, vol. 60, no. 1, pp. 87–91. DOI:10.1007/s11018-017-1154-y

2. Isaev M. M., Aliev M. A., Abdullaev V. G., Nazarov R. B., and Mamedova M. B., Measurement Techniques, 2016, vol. 59, no. 6, pp. 642–644. DOI:10.1007/s11018-016-1020-3

3. Davydov V. V., Dudkin V. I., and Karseev A. Yu., Measurement Techniques, 2014, vol. 57, no. 8, pp. 912–918. DOI:10.1007/s11018-014-0559-0

4. Daev Z. A., Measurement Techniques, 2016, vol. 59, no. 3, pp. 243–246. DOI:10.1007/s11018-016-0951-z

5. Marusina M. Ya., Bazarov B. A., Galaidin P. A., Silaev A. A., Marusin M. P., Zakemoskya E. Yu., Gilev A. G., and Alekseev A. V., Measurement Techniques, 2014, vol. 57, no. 4, pp. 461–465. DOI:10.1007/s11018-014-0478-0

6. Davydov R. V., Antonov V. I., Yushkova V. V., Grebenikova N. M., Journal of Physics: Conference Series, 2019, vol. 1236 (1), р. 012079.

7. Filippov A., Artamonova M., Rudakova M., Gimatdinov R., Skirda V., Magnetic Resonance in Chemistry, 2012, vol. 50 (2), рр. 114–119.

8. D’yachenko S. V., Kondrashkova I. S., and Zhernovoi A. I., Technical Physics, 2017, vol. 62, no. 1, pp. 1602–1604.

9. Velt I. D., and Mikhailova Yu. V., Measurement Techniques, 2013, vol. 56, no. 3, pp. 283–288. DOI:10.1007/s11018-013-0196-z

10. Davydov V. V., Dudkin V. I., Karseev A. Yu., and Vologdin V. A., Journal of Applied Spectroscopy, 2015, vol. 82, no. 6, pp. 1013–1019.

11. Popovac M., and Hanjalic K., Flow, Turbulence and Combustion, 2007, vol. 78, no. 2, pp. 177–184.

12. Grebenikova N. M., Smirnov K. J., Artemiev V. V., Kruzhalov S. V., Journal of Physics: Conference Series, 2018, vol. 1038 (1), р. 012089.

13. Zubov V. A., and Rinkevicius B. S., Quantum Electronic, 1997, vol. 24, no. 12, pp. 1161–1163.

14. Karabegov M. A., Measurement Techniques, 2004, vol. 47, no. 11, pp. 1106–1112. DOI:10.1007/s11018-005-0069-1

15. Karabegov M. A., Measurement Techniques, 2007, vol. 50, no. 6, pp. 619–628. DOI:10.1007/s11018-007-0120-5

16. Mishchenko Yu. V., Measurement Techniques, 2007, vol. 50, no. 12, pp. 1274–1281. DOI:10.1007/s11018-007-0238-5

17. Leibengardt G. L., Naidenov A. S., and Shur V. L., Measurement Techniques, 2004, vol. 47, no. 12, pp. 1211–1216. DOI:10.1007/s11018-005-0090-4

18. Grebenikova N. M., Smirnov K. J., Rud’ V. Yu, Artemiev V. V., Journal of Physics: Conference Series, 2018, vol. 1135 (1), р. 012055.

19. Grebenikova N. M., Smirnov K. J., Rud’ V. Yu., Journal of Physics: Conference Series, 2018, vol. 1124 (4), р. 041011.

20. Davydov V. V., Measurement Techniques, 2016, vol. 59, no. 11, pp. 1202–1209. DOI:10.1007/s11018-017-1116-4

21. Marusina M. Y., Bazarov B. A., Galaidin P. A., Marusin M. P., Silaev A. A., Zakemovskya E. Y., and Mustaev Y. N., Measu rement Techniques, 2014, vol. 57, no. 5, pp. 580–586. DOI:10.1007/s11018-014-0501-5

22. Neronov Y. I., and Seregin N. N., Measurement Techniques, 2017, vol. 60, no. 8, pp. 818–822. DOI:10.1007/s11018-017-1276-2

23. Davydov V. V., Dudkin V. I., and Karseev A. Yu., Russian Physics Journal, 2015, vol. 58, no. 2, pp. 146–152.

24. Zhernovoi A. I., and Latyshev G. D., Nuclear magnetic resonance in a fl owing liquid, Publ. Consultants Bureau, New York, USA, 1965.

25. Bloch F., Hansen W.W., Packard F., Physical Review, 1946, vol. 70(4), рр. 474–488.

26. Chiarotti G., Cristiani G., Giulotto L., Physical Review, 1954, vol. 93, рр. 1241–1247.

27. A. Leshe, Nuclear induction, Publ. Veb Deustscher Verlag Der Wissenschaften, Berlin, Germany,1963.

28. Davydov V. V., and Myazin N. S., Measurement Techniques, 2017, vol. 60, no. 2, pp. 183–189. DOI:10.1007/s11018-017-1171-x

29. Kashaev R. S., Gazizov E. G., Journal of Applied Spectroscopy, 2010, vol. 77(3), рр. 321–328.


Review

For citations:


Davydov V.V., Myazin N.S., Makeev S.S., Dudkin V.I. The new method for longitudinal relaxation time control of f owing liquid in the entire range of its expenditure measuring. Izmeritel`naya Tekhnika. 2020;(5):36-42. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-5-36-42

Views: 121


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)