

Structured methods for improving flow measurement accuracy in pipelines
https://doi.org/10.32446/0368-1025it.2020-5-30-35
Abstract
In the age of digital transformation of production processes in industry and science the development and design of intelligent flow sensors for granular and liquid substances transferring through pipelines becomes more important. With this in view new approaches for improving the accuracy of microwave flowmeters are proposed. Taking into account the characteristics of electromagnetic waves propagating through a pipeline, a wave scattered by inhomogeneities of the controlled medium is analyzed. Features of the transformation of the polarized scattered wave limiting the geometric dimensions of the pipeline and optimizing the values of the useful scattered signal are revealed. Expediency of collection of the information signal with orthogonal polarization of the scattered wave and through a directional coupler is substantiated. The method of estimating the measurement accuracy with reference to the signal-to-noise ratio at the input of the processing device is given. The research results can be used in cryogenic machine engineering to measure volume and mass flows of liquid cryogenic products.
About the Author
G. N. AkhobadzeRussian Federation
Gurami N. Akhobadze
Moscow
References
1. Fedyunin P. A., Dmitriev D. A., Vorob’ev A. A., Chernyshov V. N., Mikrovolnovaya termovlagometria, Moscow, Mashinostroenie-1 Publ., 2004, 208 p. (in Russian).
2. Volod’ko A. V., Krasnov R. P., Yudin V. I., Elektromagnitnye polya i volny. Ch. 2. Electromagnitnye volny i kolebaniya v volnovodakh i rezonatorakh. Uchebnoe posobie, Voronezh, IICT Publ., 2008, 173 p. (in Russian).
3. Botov M. I., Osnovy teorii radiolokatsionnykh system i kompleksov, Krasnoyarsk, Siberian Federal University Publ., 2013, 530 p. (in Russian).
4. Guzhov V. I., Nesin R. B., Emel’yanov V. A., Automatics & Software Enginery, 2016, no. 1 (15), pp. 91–96 (in Russian).
5. Sokolov S. A., Volokonno-opticheskie linii svyazi i ikh zashchita ot vneshnikh vliyanii. Uchebnoe posobie, Moscow, Infra-Inzheneriya Publ., 2019, 172 p. (in Russian).
6. Belokopytov G. V., Zhuravlev A. V., The eff ect of thin surface layeron Mie scattering resonances, Proceedings of SPIE, 2006, vol. 6258, pp. 1–12.
7. Parshin A. Yu., Parshin Yu. N., Usage of non-Gaussianstatistics for RF signals detection by complex energy and fractal detector, Proceedings of International radar symposium – IRS 2013, Germany, Drezden, German Institute of Navigation, 2013, vol. II, pp. 779–784.
8. Ponemarenko V. I., Lagunov I. M., Electromagnetic Waves and Electronic Systems, 2018, vol. 23, no. 6, pp. 30–35 (in Russian). DOI:10.18127/j15604128-201806-05
9. Sivokon’ V. P., Electrosvyaz, 2007, no. 7, pp. 55–58.
10. Lednei M. F., Tarnavskii A. S., Kristallografi ya, 2013, vol. 58, no. 5, pp. 713–720 (in Russian).
11. Mishchenko S. V., Malkov N. A., Proektirovanie radiovolnovykh SVCH priborov nerazrushayushchego kontrolya, Tambov, Tambov State Technical University Publ., 2003, 128 p. (in Russian).
12. Tatarinov V. N., Tatarinov S. V., Ligkhart L. P., Vvedenie v sovremennuyu teoriyu polyarizatsii radiolokatsionnykh signalov. Vol. 1. Polyarizatsiya ploskikh elektromagnitnykh voln i ee preobrazovaniya, Tomsk, TUSUR Publ., 2012, 381 p. (in Russian).
13. Deev V. V., Metody modulyatsii i kodirovaniya v sov remennykh sistemakh svyazi, Saint Petersburg, Nauka Publ., 2007, 133 p. (in Russian).
14. Chernogubov N. S., Pashkovets A. V., Molodoi uchenyi, 2014, no. 20, pp. 20–25 (in Russian).
15. Sun L., Yin Y.-Z., Lei X., Wong V., A novel miniaturized branch-line coupler with equivalent transmission lines, Progress In Electromagnetics Research Letters, 2013, vol. 38, pp. 35–44.
16. Vladimirov V. I., Vladimirov I. V., Nametkin V. V., Izbrannye voprosy radioelektronnogo podavlenya tsifrovikh signalov sistem radiosvyazi, Voronezh, VAIU Publ., 2010, 119 p. (in Russian).
17. Mongia R. K., Bahl I. J., Bhartia P., Hong J., Gupta K. C. (ed.), RF and microwave coupled-line circuits, 2nd ed., Boston, MA, Artech House, 2007, 549 p.
Review
For citations:
Akhobadze G.N. Structured methods for improving flow measurement accuracy in pipelines. Izmeritel`naya Tekhnika. 2020;(5):30-35. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-5-30-35