

Low-noise hybrid frequency synthesizers based on direct digital and direct analog synthesis.
https://doi.org/10.32446/0368-1025it.2020-4-51-56
Abstract
The research of the possibility of using hybrid frequency synthesizers based on direct digital and direct analog methods of frequency synthesis as heterodynes of modern spectrum analyzers constructed according to the superheterodyne scheme is presented. The main advantages of such synthesizers over traditionally used heterodyne schemes based on direct digital and indirect frequency synthesis methods are shown. The requirements for the heterodynes of the first mixing stages of spectrum analyzers are presented. A block diagram of a wideband heterodyne generating a frequency range from 4000 MHz to 8000 MHz with a step not exceeding 1 Hz is proposed. Formulas for calculating the main frequency ratios in the structure of the heterodyne have been developed. A mathematical model of phase noise power spectral density (PSD) depending on the offset frequency from the carrier is developed. The noise characteristics of the proposed scheme are studied using the model. It is determined that at the output frequency of the heterodyne equal to 4521,4 MHz, the level of phase noise PSD is: minus 90 dBc/Hz at the offset frequency equal to 100 Hz; minus 140 dBc/Hz at the offset frequency equal to 100 kHz. It is shown that the hybrid synthesizer based on direct digital and direct analog synthesis methods has an advantage in the level of phase noise from 5 to 30 dB over the low-noise heterodynes of modern spectrum analyzers at frequencies above 1 kHz from the carrier. Additional advantages of the proposed scheme are a simple architecture, low power consumption and high frequency tuning speed due to the absence of phaselocked loops in the structure of the heterodyne.
About the Authors
V. V. RomashovRussian Federation
Vladimir V. Romashov
Vladimir
K. A. Yakimenko
Russian Federation
Kirill A. Yakimenko
Vladimir
A. N. Doktorov
Russian Federation
Andrey N. Doktorov
Vladimir
L. V. Romashova
Russian Federation
Lubov V. Romashova
Vladimir
References
1. Rauscher C., Janssen V., Minihold R., Fundamentals of Spectrum Analysis, Rohde&Schwarz GmbH&Co, 2001, 224 p.
2. Agilent Spectrum Analysis Basic, available at: https://volpefirm.com/wp-content/uploads/2017/01/Agilent-Application-Note-AN-150.pdf(accessed:04.11.2019).
3. Bel’chikov C. A., Components & technologies, 2009, no. 5, pp. 139–146 (in Russian).
4. Zhao Z. Y., Li X. Y., Chang W. G., Electronics Letters, 2013, vol. 49, no. 6, pp. 391–393. DOI:10.1049/el.2012.2852
5. Sajic S., Maletic N., Sunjevaric M., Todorovic B. M., Frequenz, vol. 67, no. 7–8, pp. 233–236.
6. Romashov V. V., Romashova L. V., Khramov K. K., Yakimenko K. A., RF Patent no. 172814, Byull. Izobret., no. 21 (2017).
7. Romashov V. V., Khramov K. K., Yakimenko K. A., 24th International Crimean Conference Microwave and Telecommunication Technology, Sevastopol, Crimea, Russia, September 7–13, 2014. Sevastopol, 2014, pp. 294–295. DOI: 10.1109/CRIMICO.2014.6959400
8. Kroupa V. F., Phase Lock Loops and Frequency Synthesis, New York. John Wiley&Sons, Ltd, 2003, 320 p.
9. Hanumolu P. K., Brownlee M., Mayaram K., Moon U. K., IEEE Transactions on Circuits And Systems I-Regular Papers, 2004, vol. 51, no. 9, pp. 1665–1674. DOI:10.1109/TCSI.2004.834516
10. Gardner F., Phaselock techniques, 3rd Edition, Wiley, 2005, 450 p.
11. Kroupa V. F., Direct Digital Frequency Synthesizers, John Wiley&Sons, Ltd, 1998, 396 p.
12. Vankka J., Waltari M., Kosunen M., Halonen K., IEEE Journal of solid-state circuits, 1998, vol. 33, no. 2, pp. 218–227. DOI:10.1109/4.658623
13. Bellaouar A., O’brecht M. S., Fahim A. M., Elmasry M., IEEE Journal of solid-state circuits, 2000, vol. 35, no. 3, pp. 385–390. DOI:10.1109/4.826821
14. Romashov V. V., Romashova L. V., Khramov K. K., Yakimenko K. A., Doktorov A. N., Ovchinnikov R. V., Measurement Techniques, 2018, vol. 61, no. 5, pp. 508–513. DOI:10.1007/s11018-018-1459-5
15. Romashov V. V., Khramov K. K., Doktorov A. N., 24th International Crimean Conference Microwave and Telecommunication Technology, Sevastopol, Crimea, Russia, September 7–13, 2014. Sevastopol, 2014, pp. 310–311. DOI:10.1109/CRMICO.2014.6959408
16. Romashov V. V., Romashova L. V., Khramov K. K., Yakimenko K. A., 24th International Crimean Conference Microwave and Telecommunication Technology, Sevastopol, Crimea, Russia, September 7–13, 2014. Sevastopol, 2014, pp. 302–303. DOI:10.1109/CRIMICO.2014.6959404
17. Ryzhkov A. V., Popov V. N., Sintezatory chastot v tehnike radiosvjazi, Moscow, Radio i svjaz’ Publ., 1991, 264 p. (inRussian).
18. Romashov V. V., Romashova L. V., Doctorov A. N., Proceedings of the 2015 International Siberian Conference on Control and Communications (SIBCON). Siberian Federal University, Omsk, Russia, May 21−23, 2015. Omsk, 2015, pp. 1080–1085. DOI:10.1109/SIBCON.2015.7147197
19. Romashov V. V., Romashova L. V., Yakimenko K. A., Petrov A. E., Metody i ustrojstva peredachi i obrabotki informacii, 2018, vol. 20, pp. 34–38 (in Russian).
20. Rubiola E., Phase Noise and Frequency Stability in Oscillators, Cambridge University Press, 2010, 228 p.
Review
For citations:
Romashov V.V., Yakimenko K.A., Doktorov A.N., Romashova L.V. Low-noise hybrid frequency synthesizers based on direct digital and direct analog synthesis. Izmeritel`naya Tekhnika. 2020;(4):51-56. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-4-51-56