Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Low-noise hybrid frequency synthesizers based on direct digital and direct analog synthesis.

https://doi.org/10.32446/0368-1025it.2020-4-51-56

Abstract

The research of the possibility of using hybrid frequency synthesizers based on direct digital and direct analog methods of frequency synthesis as heterodynes of modern spectrum analyzers constructed according to the superheterodyne scheme is presented. The main advantages of such synthesizers over traditionally used heterodyne schemes based on direct digital and indirect frequency synthesis methods are shown. The requirements for the heterodynes of the first mixing stages of spectrum analyzers are presented. A block diagram of a wideband heterodyne generating a frequency range from 4000 MHz to 8000 MHz with a step not exceeding 1 Hz is proposed. Formulas for calculating the main frequency ratios in the structure of the heterodyne have been developed. A mathematical model of phase noise power spectral density (PSD) depending on the offset frequency from the carrier is developed. The noise characteristics of the proposed scheme are studied using the model. It is determined that at the output frequency of the heterodyne equal to 4521,4 MHz, the level of phase noise PSD is: minus 90 dBc/Hz at the offset frequency equal to 100 Hz; minus 140 dBc/Hz at the offset frequency equal to 100 kHz. It is shown that the hybrid synthesizer based on direct digital and direct analog synthesis methods has an advantage in the level of phase noise from 5 to 30 dB over the low-noise heterodynes of modern spectrum analyzers at frequencies above 1 kHz from the carrier. Additional advantages of the proposed scheme are a simple architecture, low power consumption and high frequency tuning speed due to the absence of phaselocked loops in the structure of the heterodyne.

About the Authors

V. V. Romashov
Vladimir State University
Russian Federation

Vladimir V. Romashov

Vladimir



K. A. Yakimenko
Vladimir State University
Russian Federation

Kirill A. Yakimenko

Vladimir



A. N. Doktorov
Vladimir State University
Russian Federation

Andrey N. Doktorov

Vladimir



L. V. Romashova
Vladimir State University
Russian Federation

Lubov V. Romashova

Vladimir



References

1. Rauscher C., Janssen V., Minihold R., Fundamentals of Spectrum Analysis, Rohde&Schwarz GmbH&Co, 2001, 224 p.

2. Agilent Spectrum Analysis Basic, available at: https://volpefirm.com/wp-content/uploads/2017/01/Agilent-Application-Note-AN-150.pdf(accessed:04.11.2019).

3. Bel’chikov C. A., Components & technologies, 2009, no. 5, pp. 139–146 (in Russian).

4. Zhao Z. Y., Li X. Y., Chang W. G., Electronics Letters, 2013, vol. 49, no. 6, pp. 391–393. DOI:10.1049/el.2012.2852

5. Sajic S., Maletic N., Sunjevaric M., Todorovic B. M., Frequenz, vol. 67, no. 7–8, pp. 233–236.

6. Romashov V. V., Romashova L. V., Khramov K. K., Yakimenko K. A., RF Patent no. 172814, Byull. Izobret., no. 21 (2017).

7. Romashov V. V., Khramov K. K., Yakimenko K. A., 24th International Crimean Conference Microwave and Telecommunication Technology, Sevastopol, Crimea, Russia, September 7–13, 2014. Sevastopol, 2014, pp. 294–295. DOI: 10.1109/CRIMICO.2014.6959400

8. Kroupa V. F., Phase Lock Loops and Frequency Synthesis, New York. John Wiley&Sons, Ltd, 2003, 320 p.

9. Hanumolu P. K., Brownlee M., Mayaram K., Moon U. K., IEEE Transactions on Circuits And Systems I-Regular Papers, 2004, vol. 51, no. 9, pp. 1665–1674. DOI:10.1109/TCSI.2004.834516

10. Gardner F., Phaselock techniques, 3rd Edition, Wiley, 2005, 450 p.

11. Kroupa V. F., Direct Digital Frequency Synthesizers, John Wiley&Sons, Ltd, 1998, 396 p.

12. Vankka J., Waltari M., Kosunen M., Halonen K., IEEE Journal of solid-state circuits, 1998, vol. 33, no. 2, pp. 218–227. DOI:10.1109/4.658623

13. Bellaouar A., O’brecht M. S., Fahim A. M., Elmasry M., IEEE Journal of solid-state circuits, 2000, vol. 35, no. 3, pp. 385–390. DOI:10.1109/4.826821

14. Romashov V. V., Romashova L. V., Khramov K. K., Yakimenko K. A., Doktorov A. N., Ovchinnikov R. V., Measurement Techniques, 2018, vol. 61, no. 5, pp. 508–513. DOI:10.1007/s11018-018-1459-5

15. Romashov V. V., Khramov K. K., Doktorov A. N., 24th International Crimean Conference Microwave and Telecommunication Technology, Sevastopol, Crimea, Russia, September 7–13, 2014. Sevastopol, 2014, pp. 310–311. DOI:10.1109/CRMICO.2014.6959408

16. Romashov V. V., Romashova L. V., Khramov K. K., Yakimenko K. A., 24th International Crimean Conference Microwave and Telecommunication Technology, Sevastopol, Crimea, Russia, September 7–13, 2014. Sevastopol, 2014, pp. 302–303. DOI:10.1109/CRIMICO.2014.6959404

17. Ryzhkov A. V., Popov V. N., Sintezatory chastot v tehnike radiosvjazi, Moscow, Radio i svjaz’ Publ., 1991, 264 p. (inRussian).

18. Romashov V. V., Romashova L. V., Doctorov A. N., Proceedings of the 2015 International Siberian Conference on Control and Communications (SIBCON). Siberian Federal University, Omsk, Russia, May 21−23, 2015. Omsk, 2015, pp. 1080–1085. DOI:10.1109/SIBCON.2015.7147197

19. Romashov V. V., Romashova L. V., Yakimenko K. A., Petrov A. E., Metody i ustrojstva peredachi i obrabotki informacii, 2018, vol. 20, pp. 34–38 (in Russian).

20. Rubiola E., Phase Noise and Frequency Stability in Oscillators, Cambridge University Press, 2010, 228 p.


Review

For citations:


Romashov V.V., Yakimenko K.A., Doktorov A.N., Romashova L.V. Low-noise hybrid frequency synthesizers based on direct digital and direct analog synthesis. Izmeritel`naya Tekhnika. 2020;(4):51-56. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-4-51-56

Views: 136


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)