

Calibration issues for a three-band microwave radiometric system with background noise compensation
https://doi.org/10.32446/0368-1025it.2020-4-44-50
Abstract
For microwave radiometric remote sensing systems in natural environments, the important issue is calibration, i.e. determination-one correspondence of values of the output signal value of the brightness temperature of the sensed region, the largest of which evaluated physical parameters. Microwave radiometric systems operate under the influence of external interference, for example, background noise – radiothermal radiation of the space surrounding the system, received through the scattering region of the antenna pattern. This article examines the influence of background noise on the external calibration of a microwave radiometric system (based on an external “deterministic” noise source) and analyzes the conditions for performing such calibration in a system with compensation for the influence of background noise. The analysis of the output signal of the microwave radiometric system showed a significant influence of background noise on the parameter determined during calibration of the system – the beginning of the receiver scale, due to a change in the value of the contribution of background noise to the output signal when forming two reference levels during calibration from two angular directions. The possibility of reducing the interference effect of background noise on the results of measurements in a microwave radiometric system with a special two-channel antenna operating on two modes of a circular waveguide, with the formation of an additional compensation signal at the antenna output, is shown. The proposed version of the analytical evaluation of the degree of compensation of the influence of background noise on the output diff erential signal of the system and presents results of its application to numerical analysis of error in external calibration a tri-band microwave radiometric system with compensation of background noise when receiving thermal radiation on the total aperture of the antenna
About the Authors
E. V. FedoseevaRussian Federation
Elena V. Fedoseeva
Murom, Vladimir region
G. G. Shchukin
Russian Federation
Georgy G. Shchukin
Saint Petersburg
I. N. Rostokin
Russian Federation
Ilya N. Rostokin
Murom, Vladimir region
References
1. Nekos A. N., Nekos V. E., Shchukin G. G., Distantsionnye metody issledovanii prirodnykh ob”ektov, Saint Petersburg, RGGMU Publ., 2009, 318 р. (in Russian).
2. Ware R., Carpenter R., Guldner J., Liljegren J., Nehrkorn T., Solheim F., and Vandenberghe F., Radio Science, 2003, vol. 38, no. 4, pp. 8079–8032. DOI:10.1029/2002RS002856
3. Karavaev D. M., Shchukin G. G., Mikrovolnovoe radiometricheskoe zondirovanie sistemy “atmosfera – podstilayushchaya poverkhnost’”. Voprosy radiometeorologii, Saint Petersburg, VKA imeni A. F. Mozhaiskogo, OOO “Izdatel’stvo “Baltiiskaya pechat’” Publ., 2013, pp. 173–192 (in Russian).
4. Rose T., Crewell S., Lohnert U., and Simmer C., Atmospheric Research, 2005, vol. 75, no. 3, pp. 183–200. DOI:10.1016/j.atmosres.2004.12.005
5. Battaglia A., Saavedra P., Simmer C., and Rose T. Rain, IEEE Geoscience and remote sensing letters, 2009, vol. 6, no. 2, pp. 354–358. DOI:10.1109/LGRS.2009.2013484
6. Westwater Ed. R., Crewell S., Mätzler C., Radio Science, 2004, no. 77, pp. 59–80. DOI:10.23919/URSIRSB.2004.7909438
7. Hewison T. J., IEEE Transactions on Geoscience and Remote Sensing, 2007, no. 45, pp. 2163–2168. DOI:10.1109/TGRS.2007.898091
8. Marzano F. S., Cimini D., Ciotti P., Ware R., IEEE Transactions on Geoscience and Remote Sensing, 2005, vol. 43, no. 5, pp. 1000–1011. DOI:10.1109/TGRS.2004.839595
9. Falin V. V., Radiometricheskie sistemy SVCh, Moscow, Luch Publ., 1997, 440 p. (in Russian).
10. Han Y., and Westwater Ed. R., IEEE Transactions on Geoscience and Remote Sensing, 2000, no. 38, pp. 1260–1276. DOI:10.1109/36.843018
11. Mashwitz G., Lohnert U., Crewell S., Rose T., and Turner D. D., Atmospheric Measurement Techniques, 2013, no. 6,pp. 2641–2658. DOI:10.5194/atm-6-2641-2013
12. Cadeddu M. P., Liljegren J. C., and Turner D. D., Atmospheric Measurement Techniques, 2013, no. 6, pp. 2359–2372. DOI:10.5194/amt-6-2359-2013
13. Matzler C., Thermal Microwave Radiation: Applications for Remote Sensing, London, The Institution of Engineering and Technology, 2006, 583 р.
14. Miacci M., Angelis C. F., Journal of Aerospace Technology&Management, 2018, vol. 10, 12 р. DOI: 10.5028/jatm.v10.927
15. Konnikova V. K., Lekht Е. Е., Silant’ev N. A., Practical radio astronomy. Textbook, Moscow University Publ., 2011, 304 p.(in Russian).
16. Fedoseeva E. V., Shchukin G. G., Voprosy metrologicheskogo obespecheniya radioteplolokatsionnykh izmerenii v usloviyakh deistviya vneshnikh shumovykh pomekh: monografi ya, Murom, Izdatel’skо-poligrafi cheskii tsentr Muromskogo instituta VLGU Publ., 2012, 103 p. (in Russian).
17. Kabanov V. A., Radiofi zika i ehlektronika, 2016, vol. 7 (21), no. 3, pp. 11–17 (in Russian).
18. Fedoseeva E. V., Rostokin I. N., Proceedings of MGO, 2010, vol. 562, pp. 243–257 (in Russian).
19. Fedoseeva E. V., Measurement Techniques, 2015, vol. 57, no. 12, pp. 1463–1468. DOI: 10.1007/s11018-015-0650-1
20. Rostokin I. N., Fedoseeva E. V., Radio and telecommunication systems, 2015, no. 1 (17), pp. 12–15 (in Russian).
21. Rostokin I., Fedoseeva E., Rostokina E., Shchukin G., 2019 Russian Open Conference on Radio Wave Propagation (RWP), Proceedings of the Conference, Kazan, Russia, 1–6 July 2019. DOI:10.1109/RWP.2019.8810166
22. Shutko A. M., SVCh-radiometriya vodnoj poverkhnosti i pochvogruntov, Moscow, Nauka Publ., 1986, 190 p. (in Russian).
Review
For citations:
Fedoseeva E.V., Shchukin G.G., Rostokin I.N. Calibration issues for a three-band microwave radiometric system with background noise compensation. Izmeritel`naya Tekhnika. 2020;(4):44-50. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-4-44-50