Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Quantum tomograph for measurement and characterization of quantum states of biphoton sources

https://doi.org/10.32446/0368-1025it.2020-4-20-26

Abstract

The method and prototype of a device for characterizing of biphoton light sources based on spontaneous parametric downconversion by quantum tomography are described. The prototype is an experimental implementation of a specialized quantum tomograph designed to measure the quantum polarization states of radiation generated by biphoton sources. Specially developed software will determine the statistical characteristics of the measured quantum state, calculate the tomographic and likelihood estimations of the density matrix, calculate the measurement errors of the density matrix elements and evaluate the quality of the quantum state of biphotons.

About the Authors

D. N. Frolovtsev
International laser center; M. V. Lomonosov Moscow state university
Russian Federation

Dmitry N. Frolovtsev

Moscow



S. A. Magnitskiy
International laser center; M. V. Lomonosov Moscow state university
Russian Federation

Sergey A. Magnitskiy

Moscow



A. V. Demin
The All-Russian Research Institute for Optical and Physical Measurements Federal State
Russian Federation

Andrey V. Demin

Moscow



References

1. Magnitskii S. A., Frolovtsev D. N., Agapov D. P. et al., Measurement Techniques, 2017, vol. 60, no. 3, рр. 235–241. DOI:10.1007/s11018-017-1179-2

2. D’Ariano G. M., Paris M. G., Sacchi M. F., Advances in Imaging and Electron Physics, 2003, vol. 128, рр. 206–309.

3. Straupe S. S., Ivanov D. P., Kalinkin A. A. et al., Physical Review A, 2011, vol. 83, no. 6, р. 060302. DOI:10.1103/PhysRevA.83.060302

4. Thew R. T., Nemoto Kae, White Andrew G., Munro William J., Physical Review A, 2002, vol. 66, no. 1, p. 012303. DOI:10.1103/PhysRevA.66.012303

5. ETSI GS QKD 012 V1.1.1 (2019-02) Quantum Key Distribution (QKD); Device and Communication Channel Parameters for QKD Deployment, ETSI, 2019.

6. James D. F. V., Kwiat P. G., Munro W. J., White A. G., Physical Review A, 2001, vol. 64, no. 5, р. 052312. DOI:10.1103/PhysRevA.64.052312

7. Frolovtsev D. N., Magnitskij S. A., RF Patent no. 2636808, Bull. Izobret., no. 2016126342 (2018).

8. Kwiat Paul G., Waks Edo, White Andrew G. et al., Physical Review A, 1999, vol. 60, no. 2, р. R773. DOI:10.1103/PhysRevA.60.R773

9. Rangarajan R., Goggin M., Kwiat P., Optics express, 2009, vol. 17, no. 21, рр. 18920–18933. DOI:10.1364/OE.17.018920

10. Powell M. J., The computer journal, 1964, vol. 7, no. 2, рр. 155–162. DOI:10.1093/comjnl/7.2.155

11. Wootters W. K., Physical Review Letters, 1998, vol. 80, no. 10, р. 2245. DOI:10.1103/PhysRevLett.80.2245

12. Wootters W. K., Quantum Information & Computation, 2001, vol. 1, no. 1, рр. 27–44.

13. Ekert A. K., Physical Review Letters, 1991, vol. 67, no. 6, р. 661. DOI:10.1103/PhysRevLett.67.661

14. Kaneda Fumihiro, Garay-Palmett Karina, U’Ren Alfred B., Kwiat Paul G., Optics express, 2016, vol. 24, no. 10, рр. 10733–10747. DOI:10.1364/OE.24.010733

15. Kwiat Paul G., Mattle Klaus, Weinfurter Harald et al., Physical Review Letters, 1995, vol. 75, no. 24, р. 4337. DOI:10.1103/PhysRevLett.75.4337

16. Kim T., Fiorentino M., Wong F. N., Physical Review A, 2006, vol. 73, no. 1, р. 012316. DOI:10.1103/PhysRevA.73.012316

17. Hentschel Michael, Hübel Hannes, Poppe Andreas, Zeilinger Anton, Optics express, 2009, vol. 17, no. 25, рр. 23153–23159. DOI:10.1364/OE.17.023153


Review

For citations:


Frolovtsev D.N., Magnitskiy S.A., Demin A.V. Quantum tomograph for measurement and characterization of quantum states of biphoton sources. Izmeritel`naya Tekhnika. 2020;(4):20-26. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-4-20-26

Views: 223


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)