

The control of the condition of the stainless steel under cyclic loading by acoustic and eddy current method
https://doi.org/10.32446/0368-1025it.2021-2-62-67
Abstract
This paper presents the results of ultrasonic and eddy-current measurements of the characteristics of austenitic stainless steel AISI 321 under fatigue failure. The effect of the strain amplitude on the intensity of changes in elastic and magnetic properties is studied. The use of a combination of eddy current and ultrasonic measurements makes it possible to assess the state of steel AISI 321 under fatigue failure is shown. The technique for measuring ultrasonic parameters described in this paper allows us to register changes in the structural state of a material under fatigue failure long before the crack is formed. The eddy current method is used to determine the volume fraction of martensite with ferromagnetic properties. An algorithm is proposed for estimating the number of loading cycles and the operating time of metastable austenitic steel AISI 321 based on the data of ultrasonic and eddy current measurements.
About the Authors
V. V. MishakinRussian Federation
Vasiliy V. Mishakin
Nizhny Novgorod
A. V. Gonchar
Russian Federation
Aleksandr V. Gonchar
Nizhny Novgorod
V. A. Klyushnikov
Russian Federation
Vyacheslav A. Klyushnikov
Nizhny Novgorod
K. V. Kurashkin
Russian Federation
Konstantin V. Kurashkin
Nizhny Novgorod
A. E. Fomin
Russian Federation
Aleksandr E. Fomin
Naberezhnye Chelny
O. A. Sergeeva
Russian Federation
Olga A. Sergeeva
Naberezhnye Chelny
References
1. Paul S. K., Sivaprasad S., Dhar S., Tarafder S. Theoretical and Applied Fracture Mechanics, 2010, vol. 54, no. 1, pp. 63–70. https://doi.org/10.1016/j.tafmec.2010.06.016
2. Ye D., Xu Y., Xiao L., Cha H. Materials Science and Engineering: A, 2010, vol. 527, no. 16–17, pp. 4092–4102. https://doi.org/10.1016/j.msea.2010.03.027
3. Niff enegger M., Leber H. J. Journal of Nuclear Materials, 2008, vol. 377, no. 2, pp. 325–330. https://doi.org/10.1016/j.jnucmat.2008.03.007
4. Mumtaz K., Takanashi S., Echigoya J., Kamada Y., Zhang L. F., Kikuchi H., Ara K., Sato M., Journal of Materials Science, 2004, vol. 39, no. 1, pp. 85–97. https://doi.org/10.1023/B:JMSC.0000017761.64839.fc
5. Shaira M., Guy P., Courbon J., Godin N. Research in Nondestructive Evaluation, 2015, vol. 21, no. 2, pp. 112–126. https://doi.org/10.1080/09349840903427854
6. Khan S. H., Ali F., Khan N. A., Iqbal M. A. Computational Materials Science, 2008, vol. 43, no. 4, pp. 623–628. https://doi.org/10.1016/j.commatsci.2008.01.034
7. Salganik R. L., Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1973, no. 4, pp. 149–158 (in Russian).
8. Aleshin N. P., Lupachev V. G., Ultrazvukovaya defectoscopiya: Spravochnoe posobie, Minsk, Vyshaishaya Shkola Publ., 1987, 271 p. (in Russian).
9. Murav’yev V. V., Zuyev L. B., Komarov K. L., Skorost’ zvuka i struktura staley i splavov, Novosibirsk, Nauka Publ., 1996, 184 p. (in Russian).
10. Uglov A. L., Khlybov A. A., Pichkov S. N., Shishulin D. N., Russian Journal of Nondestructive Testing, 2016, vol. 52, pp. 53–59. https://doi.org/10.1134/S106183091602008X
11. Mishakin V. V., Klyushnikov V. A., Gonchar A. V., Technical Physics, 2015, vol. 60, no. 5, pp. 665–668. https://doi.org/10.1134/S1063784215050163
12. Gonchar A. V., Mishakin V. V., Klyushnikov V. A., Kurashkin K. V., Technical Physics, 2017, vol. 62, no. 4, pp. 537–541. https://doi.org/10.1134/S1063784217040089
13. Mishakin V. V., Mitenkov F. M., Klyushnikov V. A., Strength of Materials, 2014, vol. 46, no. 5, pp. 666–671. https://doi.org/10.1007/s11223-014-9599-6
14. Mishakin V., Klyushnikov V., Gonchar A., Kachanov M., Journal of Nondestructive Evaluation, 2019, vol. 38, 4. https://doi.org/10.1007/s10921-018-0541-x
15. Rohn Truell, Charles Elbaum, Bruce B. Chick, Ultrasonic Methods in Solid State Physics, New York, London, Academic Press, 1969, 478 р.
Review
For citations:
Mishakin V.V., Gonchar A.V., Klyushnikov V.A., Kurashkin K.V., Fomin A.E., Sergeeva O.A. The control of the condition of the stainless steel under cyclic loading by acoustic and eddy current method. Izmeritel`naya Tekhnika. 2021;(2):62-67. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-2-62-67