

Application of fiber-optic measuring technology and phase-chronometric method for control and monitoring of technical condition of aircraft structures
https://doi.org/10.32446/0368-1025it.2021-2-49-56
Abstract
Problems of ensuring the safe operation of an aircraft from the point of view of the fatigue life of its structure are considered. The relevance of the creation and implementation of diagnostic systems for monitoring the technical condition of structures of complex technical objects is shown on the example of a helicopter. An original approach to the creation and implementation of complex systems for diagnostics and monitoring of the technical condition of complex technical objects is presented, combining fi ber-optic measuring technology and phase-chronometric method. It is shown that the use of monitoring and diagnostic systems ensures the transition to operation based on the actual technical condition. The proposed approach makes it possible to increase the time between overhaul intervals and reduce excess reserves in terms of the reliability factors of structures, which increases the flight performance of aircraft.
About the Authors
S. S. KhabarovRussian Federation
Stanislav S. Khabarov
Moscow
A. S. Komshin
Russian Federation
Alexander S. Komshin
Moscow
References
1. Makhutov N. A., Gadenin M. M., Reznikov D. O., Neganov D. A., Chebyshev collection, 2017, vol. 18 (3), p. 63 (in Russian).
2. Makhutov N. A., Industrial Laboratory. Diagnostics of Materials, 2017, vol. 83, no. 1, pt. I, pp. 52–56 (in Russian).
3. Strizhius V. E. Metody raschyota ustalostnoj dolgovechnosti elementov aviakonstrukcij: Spravochnoe posobie, Moscow, Mashinostroenie Publ., 2012, 272 p. (in Russian).
4. Nikitin A. V., Soldatkin V. V., Soldatkin V. M., Russian Aeronautics, 2016, vol. 59 (4), рр. 587–594.
5. Pakhov V. V., Fayzullin K. V., Denisov S. L., Acoustical Physics, 2020, vol. 66 (1), рр. 44–54. https://doi.org/10.1134/S1063771020010078
6. Soldatkin V. M., Soldatkin V. V., Nikitin, A. V., Russian Aeronautics, 2020, vol. 63, рр. 164–170.
7. Soldatkin V. V., Russian Aeronautics, 2009, vol. 52 (4), рр. 455–462.
8. Ariskin E. O., Nikitin A. V., Soldatkin V. V., Soldatkin V. M., Russian Aeronautics, 2015, vol. 58 (4), рр. 454–460.
9. Nikitin A. V., Soldatkin V. V., Russian Aeronautics, 2012, vol. 55 (1), рр. 68–75.
10. Kuznetsov O. I., Soldatkin V. M., Russian Aeronautics, 2017, vol. 60 (2), рр. 263–269.
11. Mironov A., Doronkin P., Priklonsky A., International Conference on Reliability and Statistics in Transportation and Communication, October 2017, Springer, Cham, 2017, pp. 137–149.
12. Nedel’ko D. V., Russian Aeronautics, 2016, vol. 59 (3), рр. 297–302.
13. Pozdnyakova E. D., Khabarov S. S., Komshin A. S., Budushchee mashinostroeniya Rossii, 2019, pp. 160–162 (in Russian).
14. Metelkina E. D., Pribory, 2016, vol. 11, рp. 14–20 (in Russian).
15. Lvov N. L., Khabarov S. S., Gavrikov M. Y., International Journal of Engineering&Technology, 2018, no. 7 (4.38), рр. 1162– 1166. https://doi.org/10.14419/ijet.v7i4.38.27755
16. Khabarov S. S., Faustov A. V., Buzhilov A. L., Lvov N. L., International Journal of Advanced Trends in Computer Science and Engineering, 2019, no. 8 (5), рр. 2586–2590.
17. Dmitrienko A. G., Blinov A. V., Novikov V. N., Measurement Techniques, 2011, vol. 54, nо. 3, рр. 235–239. https://doi.org/10.1007/s11018-011-9713-0
18. Kiselev M. I., Pronyakin V. I., Chivilev Y. V., Measurement Techniques, 2005, vol. 48, nо. 8, рр. 768–772. https://doi.org/10.1007/s11018-005-0218-6
19. Komshin A. S., Orlova S. R., Measurement Techniques, 2016, vol. 59, nо. 6, рр. 589–594. https://doi.org/10.1007/s11018-016-1013-2
20. Mehedi V. A., Tenzometricheskij metod izmereniya deformacij: Ucheb. posobie. Samara, Izdatelstvo Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2011, 56 p. (in Russian).
21. Garmash V. B. et al., Photon-Express, 2005, no. 6, рp. 128–140 (in Russian).
22. Boitsov B. V. et al., Proceedings of the MAI. Electronic journal, 2011, no. 49, available at: https://mai.ru/upload/iblock/3c1/ metody-nerazrushayushchego-kontrolya_-primenyaemye-dlyakonstruktsiy-iz-perspektivnykh-kompozitsionnykh-materialov.pdf (accessed: 22.11.2020).
23. Akustiko-emissionnyj kontrol’ aviacionnyh konstrukcij, eds. L. N. Stepanova, A. N. Ser’eznov, Moscow, Mashinostroenie Publ., 2008, 440 p. (in Russian).
24. Chernova V. V., Candidate’s dissertation of technical sciences (TPU, Tomsk, 2017).
25. Pat. No. RU 123531 U1 RF / Razuvaev I. V. Acoustic emission converter. The patent for utility model, 27.12.2012. Application no. 2012128151/28 dated 03.07.2012.
26. Moradi H., Hosseinibalam F., Hassanzadeh S., Laser Physics Letters, 2019, vol. 16 (6), р. 065106.
27. Liao H., Lu P., Liu L., Wang S., Ni W., Fu X., Zhang J., et al., IEEE Photonics Journal, 2017, vol. 9 (2), рр. 1–9. https://doi.org/10.1109/JPHOT.2017.2662944
28. Ushakov N. A., Liokumovich L. B., Journal of Lightwave Technology, 2015, vol. 33 (9), рр. 1683–1690.
29. Varzhel S. V., Volokonnye breggovskie reshetki, SPb., Universitet ITMO Publ., 2015, 65 p. (i n Russian).
30. Prigozhin I., Stengers I., Vremya. Haos. Kvant. K resheniyu paradoksa vremeni. Moscow, Editorial URSS Publ., 2003, 240 p. (in Russian).
31. Goldstein G., Klassicheskaya mekhanika, Moscow, Nauka Publ., 1975, 416 p. (in Russian).
32. Kotkin G. L., Serbo V. G., Sbornik zadach po klassicheskoj mekhanike, Moscow, Nauka Publ., 1969, 240 p. (in Russian).
Review
For citations:
Khabarov S.S., Komshin A.S. Application of fiber-optic measuring technology and phase-chronometric method for control and monitoring of technical condition of aircraft structures. Izmeritel`naya Tekhnika. 2021;(2):49-56. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-2-49-56