

Study of the characteristics of a radio photon device for determining the phase diference of a radar signals
https://doi.org/10.32446/0368-1025it.2021-2-38-42
Abstract
The paper considers the problem of accurate calculation of the phase of the radar signal in relation to the receiving phased antenna arrays. Methods for determining the phase difference based on a comparison of the received signal with the local oscillator signal are listed, as well as a method based on the use of a radio-photon analog-to-digital converter for the output signal of the receiving phased antenna array. Their disadvantages are indicated. A method and a radio photon device are proposed that are devoid of these disadvantages. The method allows you to calculate the phase difference of the radar signal at the output of the electro-optical modulator and the output signal of the photodetector, taking into account the known values of the amplitudes and phase difference of the microwave signals at the input of the receiving elements of the phased antenna array. The radio-photon device allows you to implement this method and, unlike the known analogues, is based on the use of two parallel-connected electro-optical modulators constructed according to the scheme of the Mach-Zehnder interferometer. It is shown that the proposed radio photon device provides a higher accuracy of determining the phase of the radar signal in comparison with existing analogues. At the end of the work, an analysis of the results of experimental studies using the proposed method and a radio photon device is presented. According to the results of the experiment, it was found that the phase and phase differences vary linearly, and their maximum reaches π. In addition, the square of the amplitude of the optical signal at the input of the photon-electronic unit is proportional to the phase difference and inversely proportional to the ratio of the amplitudes of the output signals of the adjacent receiving elements of the phased antenna arrays.
About the Authors
Y. N. GusenitsaRussian Federation
Yaroslav N. Gusenitsa
Anapa, Krasnodar Territory
A. L. Snegirev
Russian Federation
Aleksandr L. Snegirev
Anapa, Krasnodar Territory
S. A. Pokotilo
Russian Federation
Sergey A. Pokotilo
Anapa, Krasnodar Territory
References
1. Akhiyarov V. V, Nefedov S. I., Nikolaev A. I., Slukin G. P., Fedorov I. B., Shustikov V. Yu., Radiolokatsionnye sistemy, Moscow, MGTU im. N. Eh. Baumana Publ., 2016, 352 р. (in Russian).
2. D amdinova D. B., Poletaev A. S., Chenskii A. G., Vestnik SiBGUTI, 2017, no. 2 (38), pp. 87–97 (in Russian).
3. Korotkov K. S., Frolov D. R., Levchenko A. S., Radiotekhnika i ehlektronika, 2015, vol. 60, no. 8, pp. 873–880 (in Russian).
4. Malygin A. N., Pras’ko A. D., Trotsenko I. V., Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2020, no. 2, pp. 533–538 (in Russian).
5. Ovchinnikov F. V., Sukhotin V. V., Issledovaniya naukograda, 2017, vol. 1, no. 1 (19), pp. 30–37 (in Russian).
6. Afanas’ev V. M., Prikladnaya fotonika, 2016, vol. 3, no. 4, pp. 341–369 (in Russian).
7. Belousov A. A., Infokommunikatsionnye i radioehlektronnye tekhnologii, 2019, vol. 2, no. 4, рр. 522– 527 (in Russian).
8. V ol’khin YU. N., Tikhonov Ye. V., Proceeding of the V International Scientifi c and Practical (Technical) Conference “Obmen opytom v oblasti sozdaniya sverkhshirokopolosnykh radioelektronnykh sistem”, Omsk, 7–8 October 2014, Omsk, Omskij gosudarstvennyj tekhnicheskij universitet Publ., pp. 87–104 (in Russian).
9. Biryukov V. V., Grachev V. A., Lobin S. G., Palachev M. A., Raevskii A. S., Antenny, 2017, no. 11 (243), рр. 63–70 (in Russian).
10. Kontorov S. M., Shipulin A. V., Kyuppers F., Valuev V. V., Fotonika, 2019, vol. 13, no. 6, рр. 584–593 (in Russian).
11. Morozov O. G., Il’in G. I., Morozov G. A., Foton-ehkspress, 2017, no. 6 (142), рр. 104–105 (in Russian).
12. Chirov D. S., Kochetkov Yu. A., DSPA: Voprosy primeneniya tsifrovoi obrabotki signalov, 2020, vol. 10, no. 1, рр. 15–24 (in Russian).
13. Capmany J., Ortega B., Pastor D., Journal of Lightwave Technology, 2006, vol. 24, no. 1, pp. 201–229. https://doi.org /10.1109/JLT.2005.860478
14. Cox C. H., Ackerman E. I., Avionics, Fiber-Optics and Photonics Conference (AVFOP), 2013. https://doi.org/10.1109/AVFOP.2013.6661612
15. Hervás J., Ricchiuti A. L., Li W., Zhu N. H., FernándezPousa C. R., Sales S., Li M., Capmany J., IEEE Journal of Selected Topics in Quantum Electronics, 2017, vol. 23, no. 2, p. 5602013. https://doi.org/10.1109/JSTQE.2017.2651117
16. Kontorov S. M., Cherepenin V. A., Kulagin V. V., Prokhorov D. A., Shulunov A. N., Valuev V. V., Progress In Electromagnetics Research Symposium Abstracts, Toyama, Japan, 1-4 August, 2018, pp. 967–972. https://doi.org/10.23919/PIERS.2018.8598200
17. Manka M. E., Proceeding of the 2008 Asia-Pacifi c Microwave Photonics Conferences, pp. 275–278. https://doi.org/10.1109/MWP.2008.4666690
18. Pan S., Yao J., Journal of Lightwave Technology, 2017, vol. 35, no. 16, pp. 3498–3513. https://doi.org/10.1109/JLT.2016.2587580
19. Raevskii A. S., Biryukov V. V., Grachev V. V., Kapustin S. A., Lobin S. G., Proc. of SPIE “Optical Technologies for Telecommunications–2016”, 2016, vol. 10342. pp. 103420K1–103420K-6. https://doi.org/10.1117/12.2270386
20. Yao J., Proc. of the 20 08 International Conference on Advanced Infocomm Technology ProICAIT-08, 2008, p. 135. https://doi.org/10.1145/1509315.1509450
21. Fedyanin D. Yu., Dissertation of the candidate of physical and mathematical sciences (MFTI (GU), Dolgoprudny, 2012).
Review
For citations:
Gusenitsa Y.N., Snegirev A.L., Pokotilo S.A. Study of the characteristics of a radio photon device for determining the phase diference of a radar signals. Izmeritel`naya Tekhnika. 2021;(2):38-42. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-2-38-42