

The efficiency of using wavelet transforms for filtering noise in the signals of measuring transducers
https://doi.org/10.32446/0368-1025it.2021-2-16-21
Abstract
Methods of wavelet filtering of noise in signals of measuring transducers using the threshold method of discrete wavelet transform are considered. To study the methods of wavelet filtering of noise, special model signals were used to estimate the filtering errors. A method has been developed for determining the parameters of wavelet filtering of noise with a threshold for all levels of decomposition, which makes it possible to determine the wavelet function, threshold function and filtering threshold of the detailing coefficients of the discrete wavelet decomposition. The influence of the parameters of the noise distribution, the noise level, the number of vanishing moments of the Daubechies wavelet function, the nature of the threshold function and the threshold value on the filtering error caused by the noises of non-stationary measuring signals has been investigated by the method of a computational experiment. The results of the study of six threshold functions are given with the addition of noise to the measuring signal with nonstationary amplitude, frequency and duty cycle of rectangular pulses. The signal of the Doppler sensors is investigated, the wavelet filtering parameters are calculated, which provide the minimum error. The obtained parameters are used to construct graphs of signals before and after filtering directly in the time domain using the inverse wavelet transform.
References
1. Polovenko K. G., Prikladnaya radioelektronika, 2011, vol. 10, no. 1, рр. 15–21 (in Russian).
2. Salis C. I., Paschalis A. E. M., Bizopoulos A., Tzallas A. T., Angelidis P. A., Tsalikakis D. G., 13th IEEE International Conference on Bioinformatics and Bioengineering, Chania, Greece, November 10–13, 2013, IEEE, 2013, pp. 1–4. https://doi.org/10.1109/BIBE.2013.6701613
3. Kyzdarbekova A. S., Kassymbekova K. B., Dutbayeva. D. M., Kyzdarbek U. S., Problemy sovremennoy nauki i obrazovaniya, 2017, vol. 7 (89), рр. 112–116 (in Russian).
4. Ehrentreich F., Analytical and Bioanalytical Chemistry, 2002, vol. 372, no. 1, pp. 115–121. https://doi.org/10.1007/s00216-001-1119-4
5. Lu X.-Q., Liu H.-D., Kang J.-W., Analytica Chimica Acta, 2003, vol. 484, no. 2, рр. 201–210. https://doi.org/10.1016/S0003-2670(03)00309-X
6. Alsberg B. K., Woodward A. M., Winson M. K., Rowland J., Kell D. B., Analyst, 1997, vol. 122, no. 7, рр. 645–652. https://doi.org/10.1039/A608255F
7. Zhang B., Sun L.-X., Yu H.-B., Xin Y., Cong Z.-B., Journal of Analytical Atomic Spectrometry, 2013, vol. 28, no. 12, рр. 1884–1893. https://doi.org/10.1039/c3ja50239b
8. Mappe-Fogaing I., Joly L., Durry G., Dumelie N., Decarpenterie T., Cousin J., Parvitte B., Zeninari V., Applied Spectroscopy, 2012, vol. 66, no. 6, рр. 700–710. https://doi.org/10.1366/11-06459
9. Niu M. S., Wang G.-S., Wuli Xuebao, 2017, vol. 66, no. 2, 024202.
10. Xia H., Dong F., Zhang Z., Tu G., Pang T., Wu B., Wang Y., Advanced Sensor Systems and Applications IV, 2010, vol. 7853, 785311. https://doi.org/10.1117/12.871629
11. Li J., Parchatka U., Fischer H., Applied Physics B, 2012, vol. 108, no. 4, рр. 951–963. https://doi.org/10.1007/s00340-012-5158-7
12. Zheng C. T., Ye W.-L., Huanga J.-Q. et al., Sensors and Actuators B: Chemical, 2014, vol. 190, рр. 249–258. https://doi.org/10.1016/j.snb.2013.08.055
13. Ramos P. M., Ruisanchez I., Journal of Raman Spectroscopy, 2005, vol. 36, no. 9, рр. 848–856. https://doi.org/10.1002/jrs.1370
14. Edu I. R., Adochiei F. C., Grigorie T. L., Botez R. M., 3rd International Workshop on Numerical Modelling in Aerospace Sciences, Bucharest, Romania, May 06–07, 2015, INCAS Bulletin, 2015, vol. 7, no. 2, рр. 71–80. https://doi.org/10.13111/2066-8201.2015.7.2.7
15. Voskoboynikov Yu. Ye., Krysov D. A., Sovremennyye naukoyemkiye tekhnologii, 2018, no. 6, рр. 50–54 (in Russian).
16. Oliynyk O., Taranenko Y., Losikhin D., Shvachka A., EasternEuropean journal of enterprise technologies, 2018, vol. 4, no. 4 (94), рр. 36–42. https://doi.org/10.15587/1729-4061.2018.140649
17. Bykova T. V., Cherepashchuk G. A., Information processing systems, 2007, vol. 6 (64), pp. 11–12 (in Russian).
18. Bauman National Library, available at: https://ru.bmstu. wiki/Вейвлет-преобразование# (accessed 06.07.2020).
19. Gurevich B. S., Gurevich S. B., Manoilov V. V., Nauchnoe Priborostroenie, 2012, vol. 22, no. 1, pp. 101–106 (in Russian).
20. Voskoboinikov Yu. E., Automation and Software Engineering, 2016, vol. 1 (15), pp. 69–78 (in Russian).
21. Lee G. R., Gommers R., Wasilewski F., Wohlfahrt K., O’Leary A., Journal of Open Source Software, 2019, vol. 4 (36), 1237. https://doi.org/10.21105/joss.01237
22. Yasin A. S., Fil’tratsiya zashumlennykh signalov i izobrazheniy s primeneniyem veyvlet-preobrazovaniya: Candidate’s dissertation in Mathematics and Physics Sciences (Saratov State University, Saratov, 2016) (in Russian).
23. Burnayev Ye. V., Olenev N. N., Trudy XLVIII nauchnoy konferentsii MFTI, Chast’ VII, Moskva – Dolgoprudnyy, 2005, pp. 108–110 (in Russian)
Review
For citations:
Taranenko Y.K. The efficiency of using wavelet transforms for filtering noise in the signals of measuring transducers. Izmeritel`naya Tekhnika. 2021;(2):16-22. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-2-16-21