

Methodology for constructing the equation of state and thermodynamic tables for a new generation refrigerant
https://doi.org/10.32446/0368-1025it.2021-2-9-15
Abstract
A unified fundamental equation of state 2,3,3,3-tetrafl uoropropene (R1234yf) has been developed, a fourth-generation ozone safe refrigerant, and a method for constructing the equation has been proposed. In the gas region, this equation transforms into the virial equation of state, and in the vicinity of the critical point it satisfies the requirements of the modern large-scale theory of critical phenomena and transforms into the Widom scale equation. On the basis of a single fundamental equation of state in accordance with GOST R 8.614-2018, standard reference data (GSSSD 380-2020) on the density, enthalpy, isobaric heat capacity, isochoric heat capacity, entropy and sound velocity of R1234yf in the temperature range from 230 K to 420 K and pressures from 0.1 MPa to 20 MPa. A comparison of the calculated values of equilibrium properties with the most reliable experimental data obtained in the famous of the world, and tabular data obtained on the basis of the known fundamental equations of state R1234yf. Uncertainties of tabulated data for saturated vapor pressure, density, enthalpy, isobaric heat capacity, isochoric heat capacity, entropy and speed of sound of 2,3,3,3-tetrafl uoropropene are estimated – standard relative uncertainties by type A, B, total standard relative and expanded uncertainties. The results obtained in the work show that the proposed unified fundamental equation of state adequately describes the equilibrium properties of R1234yf in the range of state parameters stated above.
About the Authors
V. A. KolobaevRussian Federation
Viktor A. Kolobaev
Moscow
S. V. Rykov
Russian Federation
Sergey V. Rykov
St. Petersburg
I. V. Kudryavtseva
Russian Federation
Irina V. Kudryavtseva
E. E. Ustyuzhanin
Russian Federation
Evgeniy E. Ustyuzhanin
Moscow
P. V. Popov
Russian Federation
Peter V. Popov
Moscow
V. A. Rykov
Russian Federation
Vladimir A. Rykov
St. Petersburg
A. V. Sverdlov
Russian Federation
Aleksandr V. Sverdlov
St. Petersburg
A. D. Kozlov
Russian Federation
Alexander D. Kozlov
St. Petersburg
References
1. Montreal protocol on substances that deplete the ozone layer. 2010 report of the refrigeration, air conditioning and heat pumps technical options committee, 2010 assessment, pp. 4–14.
2. Kano Y., Kayukawa Y., Fujii K., Sato H., Int. J. Thermophys., 2010, vol. 31, pp. 2051–2058. https://doi.org/10.1007/s10765-010-0885-7
3. Di Nicola G., Polonara F., Santori G., J. Chem. Eng. Data, 2010, vol. 55, pp. 201–204. https://doi.org/10.1021/je900306v
4. Di Nicola C., Di Nicola G., Pacetti M., Polonara F., Santori G., J. Chem. Eng. Data, 2010, vol. 55, pp. 3302–3306. https://doi.org/10.1021/je100102q
5. Tanaka K., Higashi Y., Akasaka R., J. Chem. Eng. Data, 2010, vol. 55, pp. 901–903. https://doi.org/10.1021/je900515a
6. Qiu G., Meng X., Wu J., J. Chem. Thermodynamics, 2013, vol. 60, pp. 150–158. https://doi.org/10.1016/j.jct.2013.01.006
7. Fedele L., Bobbo S., Groppo F., Brown J. S., Zilio C., J. Chem. Eng. Data, 2011, vol. 56, pp. 2608–2612. https://doi.org/10.1021/je2000952
8. Gao N., Jiang Y., Wu J., He Y., Fluid Phase Equilibria, 2014, vol. 376, pp. 64–68. https://doi.org/10.1016/j.fl uid.2014.05.029
9. Richter M., McLinden M. O.; Lemmon E. W., J. Chem. Eng. Data, 2011, vol. 56, pp. 3254–3264. https://doi.org/10.1021/je200369m
10. Yang Z., Kou L., Mao W., Lu J., Zhang W., Lu J., J. Chem. Eng. Data, 2014, vol. 59. pp. 157–160. https://doi.org/10.1021/je400970y
11. Zhong Q., Dong X., Zhao Y., Wang J., Zhang H., Li H., Guo H., Shen J., Gong M., J. Chem. Thermodynamics, 2018, vol. 125, pp. 86–92. https://doi.org/10.1016/j.jct.2018.05.022
12. Yin J., Zhao G., Ma S., Int. J. Refrig., 2019, vol. 107, pp. 183–190. https://doi.org/10.1016/j.ijrefrig.2019.08.008
13. Lukawski M. Z., Ishmael M. P. E., Tester J. W., J. Chem. Eng. Data, 2018, vol. 63, pp. 463–469. https://doi.org/10.1021/acs.jced.7b00946
14. Lago S., Giuliano Albo P. A., Brignolo S., J. Chem. Eng. Data, 2011, vol. 56, pp. 161– 163. https://doi.org/10.1021/je100896n
15. Tanaka K., Higashi Y., Int. J. Refrig., 2010, vol. 33, pp. 474–479. https://doi.org/10.1016/j.ijrefrig.2009.10.003
16. Fedele L., Brown J. S., Colla L., Ferron A., Bobbo S., Zilio C., J. Chem. Eng. Data, 2012, vol. 57, pp. 482–489. https://doi.org/10.1021/je201030g
17. Akasaka R., Tanaka K., Higashi Y., Int. J. Refrig., 2010. vol. 33, pp. 52–60. https://doi.org/10.1016/j.ijrefrig.2009.09.004
18. Kudryavtseva I. V., Rykov V. A., Rykov S. V., Ustyuzhanin E. E., J. Phys. Conf. Ser., 2018, vol. 946, p. 012118. https://doi.org/10.1088/1742-6596/946/1/012118
19. Rykov S. V., Rykov V. A., Kudryavtseva I. V., Ustyuzhanin E. E., Sverdlov A. V., Mathematica Montisnigri, 2020, vol. 47, pp. 124–136. https://doi.org/10.20948/mathmontis-2020-47-11
20. Kozlov A. D., Lysenkov V. F., Popov P. V., Rykov V. A., J. Eng. Phys. Thermophys., 1992, vol. 62, no 6, pp. 611–617. https://doi.org/10.1007/BF00851887
21. Benedek G. B., In polarisation matie et payonnement, livre de Jubile en l’honneur du proff esor A. Kastler (Presses Universitaires de Paris, Paris). 1968, p. 71.
22. Rykov V. A., Rykov S. V., Kudryavtseva I. V., Sverdlov A. V., J. Phys. Conf. Ser., 2017, vol. 891, p. 012334. https://doi.org/10.1088/1742-6596/891/1/012334
23. Widom B., J. Chem. Phys., 1965, vol. 43, pp. 255–262. https://doi.org/10.1063/1.1696618
24. Ma Sh. Modern Theory of Critical Phenomena, New York, Roudedge, 1980. 298 p.
25. Rykov S. V., Kudryavtseva I. V., Rykov V. A., Sverdlov A. V., Vestnik Mezhdunarodnoi akademii kholoda, 2020, no. 2. pр. 79–85 (in Russian). https://doi.org/10.17586/1606-4313-2020-19-2-79-85
26. Rykov S. V., Kudryavtseva I. V., Rykov V. A. J. Phys. Conf. Ser., 2019, vol. 1385, p. 012014. https://doi.org/10.1088/1742- 6596/1385/1/012014
27. Mares R., Profous O., Sifner O. Int. J. Thermophys., 1999, vol. 20, pp. 933–942. https://doi.org/10.1023/A:1022647605881
Review
For citations:
Kolobaev V.A., Rykov S.V., Kudryavtseva I.V., Ustyuzhanin E.E., Popov P.V., Rykov V.A., Sverdlov A.V., Kozlov A.D. Methodology for constructing the equation of state and thermodynamic tables for a new generation refrigerant. Izmeritel`naya Tekhnika. 2021;(2):9-15. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-2-9-15