Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Methodology for constructing the equation of state and thermodynamic tables for a new generation refrigerant

https://doi.org/10.32446/0368-1025it.2021-2-9-15

Abstract

A unified fundamental equation of state 2,3,3,3-tetrafl uoropropene (R1234yf) has been developed, a fourth-generation ozone safe refrigerant, and a method for constructing the equation has been proposed. In the gas region, this equation transforms into the virial equation of state, and in the vicinity of the critical point it satisfies the requirements of the modern large-scale theory of critical phenomena and transforms into the Widom scale equation. On the basis of a single fundamental equation of state in accordance with GOST R 8.614-2018, standard reference data (GSSSD 380-2020) on the density, enthalpy, isobaric heat capacity, isochoric heat capacity, entropy and sound velocity of R1234yf in the temperature range from 230 K to 420 K and pressures from 0.1 MPa to 20 MPa. A comparison of the calculated values of equilibrium properties with the most reliable experimental data obtained in the famous of the world, and tabular data obtained on the basis of the known fundamental equations of state R1234yf. Uncertainties of tabulated data for saturated vapor pressure, density, enthalpy, isobaric heat capacity, isochoric heat capacity, entropy and speed of sound of 2,3,3,3-tetrafl uoropropene are estimated – standard relative uncertainties by type A, B, total standard relative and expanded uncertainties. The results obtained in the work show that the proposed unified fundamental equation of state adequately describes the equilibrium properties of R1234yf in the range of state parameters stated above.

About the Authors

V. A. Kolobaev
Russian Research Institute for Metrological Service
Russian Federation

Viktor A. Kolobaev

Moscow



S. V. Rykov
ITMO University
Russian Federation

Sergey V. Rykov

St. Petersburg



I. V. Kudryavtseva
Национальный исследовательский университет ИТМО
Russian Federation

Irina V. Kudryavtseva



E. E. Ustyuzhanin
National Research University “MPE”
Russian Federation

Evgeniy E. Ustyuzhanin

 Moscow



P. V. Popov
Russian Research Institute for Metrological Service,
Russian Federation

Peter V. Popov

Moscow



V. A. Rykov
ITMO University
Russian Federation

Vladimir A. Rykov

St. Petersburg



A. V. Sverdlov
ITMO University
Russian Federation

Aleksandr V. Sverdlov

St. Petersburg



A. D. Kozlov
ITMO University
Russian Federation

Alexander D. Kozlov

St. Petersburg



References

1. Montreal protocol on substances that deplete the ozone layer. 2010 report of the refrigeration, air conditioning and heat pumps technical options committee, 2010 assessment, pp. 4–14.

2. Kano Y., Kayukawa Y., Fujii K., Sato H., Int. J. Thermophys., 2010, vol. 31, pp. 2051–2058. https://doi.org/10.1007/s10765-010-0885-7

3. Di Nicola G., Polonara F., Santori G., J. Chem. Eng. Data, 2010, vol. 55, pp. 201–204. https://doi.org/10.1021/je900306v

4. Di Nicola C., Di Nicola G., Pacetti M., Polonara F., Santori G., J. Chem. Eng. Data, 2010, vol. 55, pp. 3302–3306. https://doi.org/10.1021/je100102q

5. Tanaka K., Higashi Y., Akasaka R., J. Chem. Eng. Data, 2010, vol. 55, pp. 901–903. https://doi.org/10.1021/je900515a

6. Qiu G., Meng X., Wu J., J. Chem. Thermodynamics, 2013, vol. 60, pp. 150–158. https://doi.org/10.1016/j.jct.2013.01.006

7. Fedele L., Bobbo S., Groppo F., Brown J. S., Zilio C., J. Chem. Eng. Data, 2011, vol. 56, pp. 2608–2612. https://doi.org/10.1021/je2000952

8. Gao N., Jiang Y., Wu J., He Y., Fluid Phase Equilibria, 2014, vol. 376, pp. 64–68. https://doi.org/10.1016/j.fl uid.2014.05.029

9. Richter M., McLinden M. O.; Lemmon E. W., J. Chem. Eng. Data, 2011, vol. 56, pp. 3254–3264. https://doi.org/10.1021/je200369m

10. Yang Z., Kou L., Mao W., Lu J., Zhang W., Lu J., J. Chem. Eng. Data, 2014, vol. 59. pp. 157–160. https://doi.org/10.1021/je400970y

11. Zhong Q., Dong X., Zhao Y., Wang J., Zhang H., Li H., Guo H., Shen J., Gong M., J. Chem. Thermodynamics, 2018, vol. 125, pp. 86–92. https://doi.org/10.1016/j.jct.2018.05.022

12. Yin J., Zhao G., Ma S., Int. J. Refrig., 2019, vol. 107, pp. 183–190. https://doi.org/10.1016/j.ijrefrig.2019.08.008

13. Lukawski M. Z., Ishmael M. P. E., Tester J. W., J. Chem. Eng. Data, 2018, vol. 63, pp. 463–469. https://doi.org/10.1021/acs.jced.7b00946

14. Lago S., Giuliano Albo P. A., Brignolo S., J. Chem. Eng. Data, 2011, vol. 56, pp. 161– 163. https://doi.org/10.1021/je100896n

15. Tanaka K., Higashi Y., Int. J. Refrig., 2010, vol. 33, pp. 474–479. https://doi.org/10.1016/j.ijrefrig.2009.10.003

16. Fedele L., Brown J. S., Colla L., Ferron A., Bobbo S., Zilio C., J. Chem. Eng. Data, 2012, vol. 57, pp. 482–489. https://doi.org/10.1021/je201030g

17. Akasaka R., Tanaka K., Higashi Y., Int. J. Refrig., 2010. vol. 33, pp. 52–60. https://doi.org/10.1016/j.ijrefrig.2009.09.004

18. Kudryavtseva I. V., Rykov V. A., Rykov S. V., Ustyuzhanin E. E., J. Phys. Conf. Ser., 2018, vol. 946, p. 012118. https://doi.org/10.1088/1742-6596/946/1/012118

19. Rykov S. V., Rykov V. A., Kudryavtseva I. V., Ustyuzhanin E. E., Sverdlov A. V., Mathematica Montisnigri, 2020, vol. 47, pp. 124–136. https://doi.org/10.20948/mathmontis-2020-47-11

20. Kozlov A. D., Lysenkov V. F., Popov P. V., Rykov V. A., J. Eng. Phys. Thermophys., 1992, vol. 62, no 6, pp. 611–617. https://doi.org/10.1007/BF00851887

21. Benedek G. B., In polarisation matie et payonnement, livre de Jubile en l’honneur du proff esor A. Kastler (Presses Universitaires de Paris, Paris). 1968, p. 71.

22. Rykov V. A., Rykov S. V., Kudryavtseva I. V., Sverdlov A. V., J. Phys. Conf. Ser., 2017, vol. 891, p. 012334. https://doi.org/10.1088/1742-6596/891/1/012334

23. Widom B., J. Chem. Phys., 1965, vol. 43, pp. 255–262. https://doi.org/10.1063/1.1696618

24. Ma Sh. Modern Theory of Critical Phenomena, New York, Roudedge, 1980. 298 p.

25. Rykov S. V., Kudryavtseva I. V., Rykov V. A., Sverdlov A. V., Vestnik Mezhdunarodnoi akademii kholoda, 2020, no. 2. pр. 79–85 (in Russian). https://doi.org/10.17586/1606-4313-2020-19-2-79-85

26. Rykov S. V., Kudryavtseva I. V., Rykov V. A. J. Phys. Conf. Ser., 2019, vol. 1385, p. 012014. https://doi.org/10.1088/1742- 6596/1385/1/012014

27. Mares R., Profous O., Sifner O. Int. J. Thermophys., 1999, vol. 20, pp. 933–942. https://doi.org/10.1023/A:1022647605881


Review

For citations:


Kolobaev V.A., Rykov S.V., Kudryavtseva I.V., Ustyuzhanin E.E., Popov P.V., Rykov V.A., Sverdlov A.V., Kozlov A.D. Methodology for constructing the equation of state and thermodynamic tables for a new generation refrigerant. Izmeritel`naya Tekhnika. 2021;(2):9-15. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-2-9-15

Views: 190


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)