

Experimental verification of a mathematical model of a computer effusion decreasing discharge pressure gas density analyzer
https://doi.org/10.32446/0368-1025it.2020-3-57-63
Abstract
The article presents the results of checking mathematical model of the created decreasing pressure effusion computer gas density analyzer. Operating principle of a decreasing pressure effusion gas density analyzers is based on measuring the outflow time of the analyzed gas certain volume through a microdiaphragm. A generalized scheme of such analyzers and their operation are described in article. Initial equations of the mathematical model, the assumptions and the results of the development of the mathematical model are presented. The created experimental setup for testing the developed mathematical model and its operation also are described. The mathematical model was tested in the course of numerous experiments on this facility for a number of gases. Studies have also been performed to assess the effect of temperature on the measurement result. The results of the mathematical model test are presented in the article. The results of experimental studies were compared with the calculated data obtained on the basis of a mathematical model. As a result, the error of the mathematical model of the decreasing pressure effusion gas density analyzers was determined and conclusions were made about its adequacy and possible further use for designing and calculating decreasing pressure effusion gas density analyzers.
About the Authors
S. Yu. ZhigulinRussian Federation
Stanislav Yu. Zhigulin
Tver
L. V. Iliasov
Russian Federation
Leonid V. Iliasov
Tver
References
1. Mordasov M. M., Savenkov A. P., Technical Physics, 2016, vol. 61, no. 8, pp. 1202–1205.
2. Farzane N. G., Ilyasov L. V., Azim-zade A. Yu. Tekhnologicheskie izmereniya i pribory, Moscow, Al’yans publ., 2017,456 p. (in Russian).
3. Kivilis S. S. Plotnomery, Moscow, Energiia publ., 1980, 280 p. (in Russian).
4. Viana M., Jouannin P., Pontier C., Chulia D, Talanta, 2002, vol. 57, no. 3, pp. 583–593. DOI:10.1016/S0039-9140(02)00058-9
5. Khatskevich E. A., Snegov V. S., Gas Industry Magazine, 2011, no. 5, pp. 84–85 (in Russian).
6. Klepcha R. R., Journal automation in industry, 2013, no. 6, pp. 34–35 (in Russian).
7. Astakhov A., Analitika, 2013, no. 8, pp. 40–44 (in Russian).
8. Bilinskii I. I., Ogorodnik K. V., Yaremishina N. A., Scientifi c works of Vinnitsa National Technical University, 2016, no. 2, pp. 10–23.
9. Iu. Tarik, Candidate’s dissertation Technical Sciences (TvSTU, Tver, 2003).
10. Sazhin S. G. Pribory kontrolya sostava i kachestva tekhnologicheskikh sred, Saint Petersburg, Lan’ Publ., 2012, 431 p.(in Russian).
11. Sukhov V. A., Sukhova V. N., RF Patent no. 2350925, Byull. Izobret., no. 9 (2009).
12. Donz’e E., Permyui A., RF Patent no. 2393456, Byull. Izobret., no. 18 (2010).
13. Badarlis A., Pfau A., Kalfas A., Sensors, 2015, vol. 15, no. 9, pp. 24318–24342. DOI:10.3390/s150924318
14. Eff usion method of determining gas density: Technologic Papers of Bureau Standarts, T. 90, Washington government Printing offi ce, 1917. DOI:10.6028/nbst.3093
15. Farzaneh-Gord M., Farsiani M., Khosravi A., Arabkoohsar A., Dasht F., Journal of Natural Gas Science and
16. Engineering, 2015, vol. 26, pp. 1018–1029. DOI:10.1016/j.jngse.2015.07.029
17. Do H., Carterb C., Liu Q., Ombrello T., Hammack S.,Lee T., Hsu K., Proceedings of the Combustion Institute, 2015, vol. 35, no. 2, pp. 2155–2162. DOI:10.1016/j.proci.2014.07.043
18. Boudjiet M. T., Bertrand J., Mathieu F., Nicu L., Mazenq L., Leïchlé T., Heinrich S. M., Pellet C., Dufour I., Sensors and Actuators B: Chemical, 2015, vol. 208, pp. 600–607. DOI:10.1016/j.snb.2014.11.067
19. Sell. J. K., Niedermayer A. O., Jakoby B., Procedia Engineering, 2011, vol. 25, pp. 1297–1300. DOI:10.1016/j.proeng.2011.12.320
20. Igarashi K., Kawashima K., Kagawab T., Sensors and Actuators A: Physical, 2017, vol. 140, no. 1, pp. 1–7. DOI:10.1016/j.sna.2007.06.017
21. Patil P., Ejaz S., Atilhan M., Cristancho D., Holste J. C., Hall K.R., The Journal of Chemical Thermodynamics, 2007, vol. 39, no. 8, pp. 1157–1163. DOI:10.1016/j.jct.2007.01.002
22. Otügen M. V., Ganguly B., Applied Optics, 2001, vol. 40, no. 21, pp. 3502–3505. DOI:10.1364/ao.40.003502
23. Khosravi A., Machado L., Nunes R. O., Journal of Petroleum Science and Engineering, 2018, vol. 168, pp. 201–216. DOI:doi.org/10.1016/j.petrol.2018.05.023
24. Mordasov D. M., Savenkov A. P., Chechetov K. E., Engineering Physics, 2014, no. 1, pp. 13–18 (in Russian).
25. Zhigulin S. Yu., Ilyasov L. V. , Journal of Instrument Engineering, 2019, vol. 621, no. 12, pp. 1053–1059. DOI:10.17586/0021-3454-2019-62-12-1053–1059
Review
For citations:
Zhigulin S.Yu., Iliasov L.V. Experimental verification of a mathematical model of a computer effusion decreasing discharge pressure gas density analyzer. Izmeritel`naya Tekhnika. 2020;(3):57-63. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-3-57-63