Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Experimental verification of a mathematical model of a computer effusion decreasing discharge pressure gas density analyzer

https://doi.org/10.32446/0368-1025it.2020-3-57-63

Abstract

The article presents the results of checking mathematical model of the created decreasing pressure effusion computer gas density analyzer. Operating principle of a decreasing pressure effusion gas density analyzers is based on measuring the outflow time of the analyzed gas certain volume through a microdiaphragm. A generalized scheme of such analyzers and their operation are described in article. Initial equations of the mathematical model, the assumptions and the results of the development of the mathematical model are presented. The created experimental setup for testing the developed mathematical model and its operation also are described. The mathematical model was tested in the course of numerous experiments on this facility for a number of gases. Studies have also been performed to assess the effect of temperature on the measurement result. The results of the mathematical model test are presented in the article. The results of experimental studies were compared with the calculated data obtained on the basis of a mathematical model. As a result, the error of the mathematical model of the decreasing pressure effusion gas density analyzers was determined and conclusions were made about its adequacy and possible further use for designing and calculating decreasing pressure effusion gas density analyzers.

About the Authors

S. Yu. Zhigulin
Tver State Technical University
Russian Federation

Stanislav Yu. Zhigulin

Tver



L. V. Iliasov
Tver State Technical University
Russian Federation

Leonid V. Iliasov

Tver



References

1. Mordasov M. M., Savenkov A. P., Technical Physics, 2016, vol. 61, no. 8, pp. 1202–1205.

2. Farzane N. G., Ilyasov L. V., Azim-zade A. Yu. Tekhnologicheskie izmereniya i pribory, Moscow, Al’yans publ., 2017,456 p. (in Russian).

3. Kivilis S. S. Plotnomery, Moscow, Energiia publ., 1980, 280 p. (in Russian).

4. Viana M., Jouannin P., Pontier C., Chulia D, Talanta, 2002, vol. 57, no. 3, pp. 583–593. DOI:10.1016/S0039-9140(02)00058-9

5. Khatskevich E. A., Snegov V. S., Gas Industry Magazine, 2011, no. 5, pp. 84–85 (in Russian).

6. Klepcha R. R., Journal automation in industry, 2013, no. 6, pp. 34–35 (in Russian).

7. Astakhov A., Analitika, 2013, no. 8, pp. 40–44 (in Russian).

8. Bilinskii I. I., Ogorodnik K. V., Yaremishina N. A., Scientifi c works of Vinnitsa National Technical University, 2016, no. 2, pp. 10–23.

9. Iu. Tarik, Candidate’s dissertation Technical Sciences (TvSTU, Tver, 2003).

10. Sazhin S. G. Pribory kontrolya sostava i kachestva tekhnologicheskikh sred, Saint Petersburg, Lan’ Publ., 2012, 431 p.(in Russian).

11. Sukhov V. A., Sukhova V. N., RF Patent no. 2350925, Byull. Izobret., no. 9 (2009).

12. Donz’e E., Permyui A., RF Patent no. 2393456, Byull. Izobret., no. 18 (2010).

13. Badarlis A., Pfau A., Kalfas A., Sensors, 2015, vol. 15, no. 9, pp. 24318–24342. DOI:10.3390/s150924318

14. Eff usion method of determining gas density: Technologic Papers of Bureau Standarts, T. 90, Washington government Printing offi ce, 1917. DOI:10.6028/nbst.3093

15. Farzaneh-Gord M., Farsiani M., Khosravi A., Arabkoohsar A., Dasht F., Journal of Natural Gas Science and

16. Engineering, 2015, vol. 26, pp. 1018–1029. DOI:10.1016/j.jngse.2015.07.029

17. Do H., Carterb C., Liu Q., Ombrello T., Hammack S.,Lee T., Hsu K., Proceedings of the Combustion Institute, 2015, vol. 35, no. 2, pp. 2155–2162. DOI:10.1016/j.proci.2014.07.043

18. Boudjiet M. T., Bertrand J., Mathieu F., Nicu L., Mazenq L., Leïchlé T., Heinrich S. M., Pellet C., Dufour I., Sensors and Actuators B: Chemical, 2015, vol. 208, pp. 600–607. DOI:10.1016/j.snb.2014.11.067

19. Sell. J. K., Niedermayer A. O., Jakoby B., Procedia Engineering, 2011, vol. 25, pp. 1297–1300. DOI:10.1016/j.proeng.2011.12.320

20. Igarashi K., Kawashima K., Kagawab T., Sensors and Actuators A: Physical, 2017, vol. 140, no. 1, pp. 1–7. DOI:10.1016/j.sna.2007.06.017

21. Patil P., Ejaz S., Atilhan M., Cristancho D., Holste J. C., Hall K.R., The Journal of Chemical Thermodynamics, 2007, vol. 39, no. 8, pp. 1157–1163. DOI:10.1016/j.jct.2007.01.002

22. Otügen M. V., Ganguly B., Applied Optics, 2001, vol. 40, no. 21, pp. 3502–3505. DOI:10.1364/ao.40.003502

23. Khosravi A., Machado L., Nunes R. O., Journal of Petroleum Science and Engineering, 2018, vol. 168, pp. 201–216. DOI:doi.org/10.1016/j.petrol.2018.05.023

24. Mordasov D. M., Savenkov A. P., Chechetov K. E., Engineering Physics, 2014, no. 1, pp. 13–18 (in Russian).

25. Zhigulin S. Yu., Ilyasov L. V. , Journal of Instrument Engineering, 2019, vol. 621, no. 12, pp. 1053–1059. DOI:10.17586/0021-3454-2019-62-12-1053–1059


Review

For citations:


Zhigulin S.Yu., Iliasov L.V. Experimental verification of a mathematical model of a computer effusion decreasing discharge pressure gas density analyzer. Izmeritel`naya Tekhnika. 2020;(3):57-63. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-3-57-63

Views: 85


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)