Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

A Study Interfrequency Onboard Delays of Signals Navigation Satellites GLONASS

https://doi.org/10.32446/0368-1025it.2020-3-43-48

Abstract

The problem of interfrequency signal delays estimation of GLONASS system navigation satellite is considered Such delays in the radio-frequency massage of navigation satellites are the source of the instrumental error of pseudorange measurements. The estimation method of interfrequency signal delays is proposed, based on the calculation of first differences of pseudorange measurements on navigation satellites, the relative position of which diff ers by no more than 1°. The experiment on estimation of inter-frequency delays signal on the basis of the developed method was conducted. The experiment is based on the use of calibrated navigation receiver to separate errors caused by signal delays in the receiver and navigation satellite. Also, to minimize the effects of the Earth's ionosphere layer navigation signal delay, only those measurements taken at a low Total Electronic Concentration TEC are included in the processing. Pseudorange measurements using GLONASS and GPS navigation satellites signals were used as the main source data. The results of the estimation for all GLONASS orbital group satellites were compared with the form values provided in the navigation massage. The results of experimental research have been analyzed and the values of standard deviation of GLONASS orbital group delays have been obtained. To confirm the adequacy of the results was checked for internal convergence of the results and determined the error of the developed method for assessing the interfrequency delays of navigation spacecraft.

About the Authors

E. A. Karaush
Federal State Unitary Enterprise Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Ekaterina A. Karaush

Mendeleevo, Moscow region



D. S. Pecheritsa
Federal State Unitary Enterprise Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Dmitry S. Pecheritsa

Mendeleevo, Moscow region



References

1. Hofmann-Wellenhof B., Lichtenegger H., Collins J., Global Positioning System. Theory and Practice, Springer-Verlag Wien GmbH, 2001, 404 p. DOI:10.1007/978-3-7091-6199-9

2. Perov A. I., Kharisov V. N., Bakit’ko R. V., Boldenkov E. N., Bulavskii N. T., Dvorkin V. V., Efi menko B. C., Kosenko V. E., Nartov V. Ya., Meroi A. I., Per’kov A. E., Tyubalin V. V., Urlichich Yu. M., Kharisov V. N., Chebotarev V. E., Shatilov A. Yu., GLONASS. Printsipy postroeniya i funktsionirovaniya / Ed. by A. N. Perova, V. N. Kharisova, Moscow, Radiotekhnika, 2010, 800 p. (in Russian).

3. Sanz Subirana J., Juan Zornoza J. M., HernándezPajares M., GNSS Data processing. Volume 1: Fundamentals and Algorithms, ESA Communications: Noordwijk, 2013, 223 p., available at: https://gssc.esa.int/navipedia/GNSS_Book/ESA_GNSS-Book_TM-23_Vol_I.pdf (accessed: 14.02.2020).

4. Altamimi Z., Antreich F., Beard R., Bolkunov A., Braasch M. S., Burger T., Cardellach E., Curran J. T., Defraigne P., Eissfeller B., Elgered G., Falcone M., Farnworth R., Farrell J. A., Freymueller J., Ganeshan A.S., Gao S., Giorgi G., Gross R., Hahn J., Hauschild A., Hausler G., Hegarty C. J., Hobiger T., Hugentobler U., Humphreys T., Jakowski N., Jekeli C., Johnston G., Kealy A., Kogure S., Kouba J., Lahaye F., Langley R. B., MacLeod K., Maqsood M., Meurer M., Montenbruck O., Moore T., Odijk D., Pany T., Petovello M. G., Pullen S., Revnivykh S., Riddell A., Rius A., Rizos C., Senior K., Serdyukov A., Springer T., Steigenberger P., Tang J., Tétreault P., Teunissen P. J. G., Verhagen S., Walter T., Wanninger L., Weiss J. P., Wendel J., Wickert J., Won J.-H., Yang Y., Springer Handbook of Global Navigation Satellite Systems, eds. Peter J. G. Teunissen, Oliver Montenbruck, GmbH, Leipzig, 2017, 1327 p. DOI:10.1007/978-3-319-42928-1

5. Interfeisnyi kontrol’nyi dokument GLONASS. 5.1 edition, Moscow, RNIIKP, 2008, 74 p. (in Russian), available at:http://russianspacesystems.ru/wp-content/uploads/2016/08/ICD_GLONASS_rus_v5.1.pdf (accessed: 14.02.2020).

6. Montenbruck O., Hauschild A., Steigenberger P., Navigation – Journal of The Institute of Navigation, 2014, no. 61 (3), pp. 191–201. DOI:10.1002/navi.64

7. Montenbruck O., Steigenberger P., Prange L., Deng Z., Zhao Q., Perosanz F., Romero I., Noll C., Stürze A., Weber G., Schmid R., MacLeod K., Schaer S., Advances in Space Research, 2017, vol. 59, no. 7, pp. 1671–1697. DOI:10.1016/j.asr.2017.01.011

8. Reussner N., Wanninger L. GLONASS Inter-frequency Biases and Their Eff ects on RTK and PPP Carrier-phase Ambiguity Resolution. Proceedings of the 24th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2011), Portland, OR, September 2011, pp. 712–716.

9. Ciraolo L., Azpilicueta F., Brunini C., Meza A., Radicella S. M., Journal of Geodesy, 2007, vol. 81, pp. 111–120. DOI:10.1007/s00190-006-0093-1

10. Klobuchar J. Ionospheric Time-Delay Algorithms for SingleFrequency GPS Users. IEEE Transactions on Aerospace and Electronic Systems, 1987, vol. AES-23, no. 3, pp. 325–331. DOI:10.1109/TAES.1987.310829

11. European Union. European GNSS (Galileo) Open Service-Ionospheric Correction Algorithm for Galileo Single Frequency Users. 1.2, available at: https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo_Ionospheric_Model.pdf (accessed: 14.02.2020).

12. Schaer S., Gurtner W., Feltens J., IONEX: The IONosphere map Exchange Format Version 1.1. Proceedings of the IGS AC Workshop, Darmstadt, Germany, 9–11 February 2015, available at: http://ftp.aiub.unibe.ch/ionex/draft/ionex11.pdf(accessed: 14.02.2020).

13. Mannucci A. J., Wilson B. D., Yuan D. N., Ho C. H., Lindqwister U. J., Runge T. F., Radio Science, 1998, vol. 33, no. 3, pp. 565–582.

14. Ammar M., Aquino M., Vadakke Veettil S., GPS Solutions, 2018, vol. 2, pp. 22–32. DOI:10.1007/s10291-018-0700-7

15. Wang N., Yuan Y., Li Z., Montenbruck O., Tan B., Journal of Geodesy, 2016, vol. 90, no. 3, pp. 209–228, DOI:10.1007/s00190-015-0867-4

16. Mylnikova A. A., Yasyukevich Yu. V., Kunitsyn V. E., Results in Physics, 2015, vol. 5, pp. 9–10. DOI:10.1016/j.rinp.2014.11.002

17. Wilson B. D., Yinger C. H., Feess W. A., Shank C., GPS World, 1999, vol. 10, no. 9, pp. 56–66, available at: http://hdl.handle.net/2014/18173(accessed:14.02.2020).

18. Peche ritsa D. S., Fedotov V. N. Kalibrovka bezzaprosnykh izmeritel’nykh sistem GLONASS s obespechenie proslezhivaemosti k gosudarstvennym pervichnym ehtalonam edinits velichin, Abstracts of Papers VII Conference «Fundamental’noe i prikladnoe koordinatno-vremennoe i navigatsionnoe obespechenie» (KVNO-2017), April 17–21, 2017, St. Petersburg, IAA RAS, 2017, pp. 204–205 (in Russian).

19. Kouba J., A guide to using International GNSS Service (IGS) products. 2009. Available at: http://kb.igs.org/hc/en-us/article_attachments/203088448/UsingIGSProductsVer21_cor.pdf(accessed: 20.12.2019).

20. Petit G., Luzum B., IERS Conventions. 2010, Frankfurt am Main, Verlag des Bundesamts fur Kartographie und Geodasie, 2010, 179 p., available at: http://iers-conventions.obspm.fr/content/tn36.pdf(accessed:14.02.2020)


Review

For citations:


Karaush E.A., Pecheritsa D.S. A Study Interfrequency Onboard Delays of Signals Navigation Satellites GLONASS. Izmeritel`naya Tekhnika. 2020;(3):43-48. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-3-43-48

Views: 444


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)