Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Analysis of significant measures for thermal conductivity

https://doi.org/10.32446/0368-1025it.2020-3-35-42

Abstract

The analysis of a new class of measuring instrument for heat quantities based on the use of multi-valued measures of heat conductivity of solids. For example, measuring thermal conductivity of solids shown the fallacy of the proposed approach and the illegality of the use of the principle of ambiguity to intensive thermal quantities. As a proof of the error of the approach, the relations for the thermal conductivities of the component elements of a heat pump that implements a multi-valued measure of thermal conductivity are given, and the limiting cases are considered. In two ways, it is established that the thermal conductivity of the specified measure does not depend on the value of the supplied heat flow. It is shown that the declared accuracy of the thermal conductivity measurement method does not correspond to the actual achievable accuracy values and the standard for the unit of surface heat flux density GET 172-2016. The estimation of the currently achievable accuracy of measuring the thermal conductivity of solids is given. The directions of further research and possible solutions to the problem are given.

About the Authors

Y. P. Zarichnyak
National Research University of Technologies, Mechanics and Optics,
Russian Federation

Yuri P. Zarichnyak

St. Petersburg



V. P. Khodunkov
D. I. Mendeleev Institute for Metrology
Russian Federation

Vyacheslav P. Khodunkov

St. Petersburg



References

1. Sokolov N. A., RF Patent no. 2343466, Bull. Izobret.,no. 1 (2009).

2. Sokolov N. A., Sokolov A. N., Measurement Techniques, 2009, vol. 52, no. 7, pp. 43–45. DOI:10.1007/s11018-009-9349-5

3. Sokolov N. A., Sokolov A. N., Devices, 2018, no. 8, pp. 39–43.

4. Zarichnyak Y. P., Kompan T. A., Khodunkov V. P., Kulagin V. I., Devices, 2019, no. 5, pp. 22–26.

5. Ivanov V. A., Zarichnyak Y. P., EURASTRENCOLD-2018, Proseedings of the VIII Eurasian Symposium on the problems of the strength of materials and machines for cold climate region, Yakutsk, 3–7 july, 2018, Yakutsk, Tsumori Press Publ., 2018, pp. 194–207.

6. Dulnev G. N., Zarichnyak Y. P., Teploprovodnost’ smesej i kompozicionnyh materialov, Leningrad, Energiya Publ., 1974. 264 p. (in Russian).

7. Poltorak O. M., Termodinamika v fi zicheskoj himii. Uchebnik dlya himiko-tekhnologicheskih special’nostej vuzov, Moscow, Vysshaya shkola Publ., 1991, 319 p. (in Russian).

8. Lykov A. V., Teoriya teploprovodnosti. Uchebnoe posobie, Moscow, Vysshaya shkola Publ., 1967, 600 p. (in Russian).

9. Osipova V. A., Eksperimental’noe issledovanie processov teploobmena, 2-e izd. Moscow, Energiya Publ., 1969, 392 p. (in Russian).

10. Ipatov Yu. S., Leikum V. I., Oleinik B. N., Trudy VNIIM, 1963, no. 63 (123), pp. 3–24 (in Russian).

11. Chistov A. N., Kladov M. Yu., Pronin I. B., Smirnov A. S., Engineering Journal: Science and Innovation, 2019, no. 9, pp. 1–13. DOI:10.18698/2308-6033-2019-9-1920

12. Kondratiev G. M., Teplovye izmereniya, Moscow, Mashgiz Publ., 1957, 244 p (in Russian).

13. Bulanova V. O., Bulanov E. V., Ponomarev S. V., Divin A. G., Journal of Instrument Engineering, 2019, vol. 62, no. 11, pp. 1022–1029. DOI:10.17586/0021-3454-2019-62-11-1022-1029

14. Ponomarev S. V., Bulanov E. V., Bulanova V. O., Divin A. G., Measurement Techniques, 2019, vol. 61, no. 12, pp. 1203–1208. DOI:10.1007/s11018-019-01570-9


Review

For citations:


Zarichnyak Y.P., Khodunkov V.P. Analysis of significant measures for thermal conductivity. Izmeritel`naya Tekhnika. 2020;(3):35-42. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-3-35-42

Views: 84


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)