Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Integrated GNSS antenna with an embedded inertial measurement unit

https://doi.org/10.32446/0368-1025it.2020-3-16-23

Abstract

When constructing inertial/GNSS navigation systems, it is necessary to determine coordinates of a GNSS antenna relative to an inertial measurement unit. It is proposed to solve this problem by integrating of the inertial unit and GNSS antenna’s element into a common structure called an integrated antenna. This approach allows to determine the required coordinates in factory conditions, during a manufacturing of the integrated antenna. Operation principles of design modules of the integrated antenna and ways to use this antenna in the inertial/GNSS navigation systems have been described. Design features of a half-duplex digital data exchange between the antenna and a data processor have been indicated. Approaches to use this exchange to solve some service tasks of the navigation system have been proposed. It is noted that the integrated antenna has its own measuring basis. Methods of accounting of the attitude of this basis in practical applications of the integrated antennas in the single- and multi-antenna inertial/GNSS navigation systems have been described.

About the Author

N. N. Vasilyuk
Topcon Positioning Systems, LLC
Russian Federation

Nikolay N. Vasilyuk

Moscow



References

1. Veitsel’ A. V., Veitsel’ V. A., Tatarnikov D. V. Apparatura vysokotochnogo pozitsionirovaniya po signalam global’nykh navigatsionnykh sputnikovykh sistem: Vysokotochnye antenny. Spetsial’nye metody povysheniya tochnosti pozitsionirovaniya, ed. M. I. Zhodzishskii, Moscow, MAI-PRINT, 2010, 368 p. (in Russian).

2. Emelyantsev G. I., Blazhnov B. A., Dranitsyna E. V., Stepanov A.P., Gyroscopy and Navigation, 2016, vol. 7, no. 3, pp. 205–213. DOI:10.1134/S2075108716030044

3. Zhang R., Hofl inger F., Reind L. M., IEEE Sensors Journal, 2014, vol. 14, no. 6, pp. 1778–1787. DOI:10.1109/JSEN.2014.2303642

4. Stovner B. N., Johansen T. A., 18th European Control Conference (ECC), Naples, Italy, June 25–28, 2019, pp. 4040–4046. DOI:10.23919/ECC.2019.8795760

5. Song J. W., Park C. G., IEEE Sensors Journal, 2016, vol. 16, no. 9, pp. 3171–3180. DOI:10.1109/JSEN.2015.2510545

6. Seo J., Hyung H. K., Lee J. G., Park C. C., International Journal of Control, Automation, and Systems, 2006, vol. 4, no. 2, pp. 247–254.

7. Liu C., Deng Z., Gao W., Fu M., Proceedings of the 30th Chinese Control Conference, Yantai, China, July 22–24, 2011, pp. 1476–1481.

8. Geng C., Wu F., Xu S., Zhang X., Si F., Zhao Y., 2018 IEEE/ION Position, Location and Navigation Symposium, CA, USA, April 23–26, 2018, pp. 882–890. DOI:10.1109/PLANS.2018.8373466

9. Xiong Z., Peng H., Liu J., Wang J., Sun Y., 2014 IEEE/ ION Position, Location and Navigation Symposium, Monterey, CA, May 5–8, 2014, pp. 1213–1218. DOI:10.1109/PLANS.2014.6851495

10. Xiong Z., Peng H., Wang J.,. Wang R., Liu J., IEEE Transactions on Aerospace and Electronic Systems, 2015, vol. 51, no. 4, pp. 2760–2771. DOI:10.1109/TAES.2015.140048

11. Montalbano N., Humphreys T., 2018 IEEE/ION Position, Location and Navigation Symposium, Monterey, CA, USA, April 23–26, 2018, pp. 680–687. DOI:10.1109/PLANS.2018.8373443

12. Hong S., Man H. L., Chun H. H., Kwon S. H., Speyer J. L., IEEE Transactions on Vehicular Technology, 2006, vol. 55, no. 2, pp. 431–448. DOI:10.1109/TVT.2005.863411

13. Ma Y., Fang J., Li J., Measurement, 2014. vol. 48, no.1, pp. 119–127. DOI:10.1016/j.measurement.2013.10.020

14. Ramanandan A., Chen A., Farrell J. A., 2010 IEEE/ ION Position, Location and Navigation Symposium, Indian Wells, CA, May 4–6, 2010, pp. 1197–1203. DOI:10.1109/PLANS.2010.5507279

15. Vasilyuk N., Vorobiev M., Tokarev D., 2018 IEEE/ ION Position Location and Navigation Symposium, Monterey, CA, USA, April 23–26, 2018, pp. 267–274. DOI:10.1109/PLANS.2018.8373390

16. Vasilyuk N. N., Tychinskiy S. I., Doronin A. V., Sandler I. A., Sokolov A. M., US Patent 10088576 (2 October 2018).

17. Bilich A., Mader G. L., Proceedings of the 23rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2010), Portland, Oregon, USA, September 21–24, 2010, pp. 1369–1377.

18. Péntek Z., Hiller T., Liewald T., Kuhlmann B., Czmerk A., 2017 DGON Inertial Sensors and Systems Symposium, Karlsruhe, Germany, September 19–20, 2017, pp. 1–14. DOI:10.1109/InertialSensors.2017.8171504

19. Hong S., Lee M. H., Kwon S. H., Chun H. H., IEEE Transactions on Intelligent Transportation Systems, 2204, vol. 5, no. 3, pp. 208–218. DOI:10.1109/TITS.2004.833771

20. Zharkov M. V., Verem eenko K. K., Antonov D. A., Kuznetsov I. M., Gyroscopy and Navigation, 2018, vol. 9, no. 4, pp. 277–286. DOI:10.1134/S2075108718040090


Review

For citations:


Vasilyuk N.N. Integrated GNSS antenna with an embedded inertial measurement unit. Izmeritel`naya Tekhnika. 2020;(3):16-23. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-3-16-23

Views: 80


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)