Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Electromagnetic feld transformation from a surface closed around the antenna to its aperture

https://doi.org/10.32446/0368-1025it.2021-1-48-55

Abstract

The article proposes a direct algorithm for reconstruction the electromagnetic field at the antenna aperture, which can be used to solve problems of diagnostics and spatial filtering. The algorithm is based on the solution of Maxwell's equations in the form of advanced potentials of the electromagnetic field. It is shown that following from it advanced electromagnetic waves are equivalent to retarded electromagnetic waves when the parameters of the medium are stationary and linear. The direct algorithm is formulated as the multiplication of the transformation operator matrix by the known vector of the electromagnetic field on a closed surface. In this case, the transformation outward (far field) or inward (aperture) of the surface is described by the same operator and differs only in the signs of the input quantities. Unlike the known ones, the direct algorithm does not require scanning the electromagnetic field on canonical surfaces or solving a large system of integral equations. This makes it optimal for use in new near-fi eld measurement systems based on industrial robots, unmanned aerial vehicles, etc. Verification of the developed algorithm using experimental data has shown the possibility of reconstruction the normalized distribution of the electric field strength at the antenna aperture with an error less than 2 dB.

About the Author

N. V. Anyutin
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Nikolay V. Anyutin

Mendeleevo, Moscow Region,



References

1. Yaghjian A., IEEE Transactions on Antennas and Propagation, January 1986, vol. 34, no. 1, pp. 30–45. https://doi.org/10.1109/TAP.1986.1143727

2. Rahmat-Samii Y., Radio Science, 1984, vol. 19, no. 05, pp. 1205–1217. https://doi.org/10.1029/RS019i005p01205

3. Hess D. W., Inverse Methods in Electromagnetic Imaging. NATO ASI Series (Series C: Mathematical and Physical Sciences), 1985, vol. 143, pp. 1255–1266, Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5271-3_33

4. Cappellin C., Frandsen A., Breinbjerg O., IEEE Antennas and Propagation Magazine, 2008, vol. 50, no. 5, pp. 204–213. https://doi.org/10.1109/MAP.2008.4674761

5. Kirpanev A. V., Nazarov V. S., Metrologicheskoe obespechenie innovatsionnykh tekhnologii, Abstracts of Papers, St. Petersburg, 2019, pp. 112–115.

6. Eibert T. F., Kilic E., Lopez C., Mauermayer R. A. M., Neitz O., and Schnattinger G. T., Progress in Electromagnetics Research, 2015, vol. 151, pp. 127–150. https://doi.org/10.2528/PIER14121105

7. Las-Heras F., Pino M. R., Loredo S., Alvarez Y., and Sarkar T. K., IEEE Transactions on Antennas and Propagation, Aug. 2006, vol. 54, no. 8, pp. 2198–2207. https://doi.org/10.1109/TAP.2006.879190

8. Alvarez Y., Las-Heras F., Pino M. R., IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 12, pp. 3460– 3468. https://doi.org/10.1109/TAP.2007.910316

9. Eibert T. F., Schmidt C. H., IEEE Transactions on Antennas and Propagation, 2009, vol. 57, no. 4, pp. 1178–1185. https://doi.org/10.1109/TAP.2009.2015828

10. Varela F. R., Iragüen B. G., Sierra-Castaner M., IEEE Transactions on Antennas and Propagation, 2019, vol. 68, no. 1, pp. 500–508. https://doi.org/10.1109/TAP.2019.2935108

11. Gordon J. A. et al., IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 12, pp. 5351–5362. https://doi.org/10.1109/TAP.2015.2496110

12. D. J. van Rensburg, Walkenhorst B., Ton Q., and Demas J., A Robotic Near-Field Antenna Test System Relying on Non-Canonical Transformation Techniques, 2019 Antenna Measurement Techniques Association Symposium (AMTA), San Diego, CA, USA, 2019, pp. 1–5. https://doi.org/10.23919/AMTAP.2019.8906358

13. Slater P. A., Downey J. M., Piasecki M. T., and Schoenholz B. L., Portable Laser Guided Robotic Metrology System, 2019 Antenna Measurement Techniques Association Symposium (AMTA), San Diego, CA, USA, 2019, pp. 1–6. https://doi.org/10.23919/AMTAP.2019.8906337

14. Geise A. et al., IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 5, pp. 3346–3357. https://doi.org/10.1109/TAP.2019.2900373

15. Garcia-Fernandez M., Lopez Y. A., Andres F. L. H., IET Microwaves, Antennas & Propagation, 2019, vol. 13, no. 13, pp. 2224–2231. https://doi.org/10.1049/iet-map.2018.6167

16. Alvarez Narciandi G. et al., Portable Freehand System for Real-time Antenna Diagnosis and Characterization, IEEE Transactions on Antennas and Propagation, 2020. https://doi.org/10.1119/TAP.2020.297893

17. Stratton J. A., Electromagnetic theory, John Wiley & Sons, 2007.

18. Anyutin N. V., Malai I. M., Ozerov M. A., et al., Measurement Techniques, 2018, vol. 61, no. 1, pp. 67–71. https://doi.org/10.1007/s11018-018-1389-2

19. Anyutin N., Malay I., and Malyshev A., 2019 Radiation and Scattering of Electromagnetic Waves (RSEMW), Divnomorskoe, Russia, 2019, pp. 293–296. https://doi.org/10.1109/RSEMW.2019.8792778

20. Boris M. Bolotovskiĭ and Stanislav N. Stolyarov, 1975 Sov. Phys. Usp. (vol.) 17 (no. 6) 875–895. https://doi.org/10.1070/PU1975v017n06ABEH004403


Review

For citations:


Anyutin N.V. Electromagnetic feld transformation from a surface closed around the antenna to its aperture. Izmeritel`naya Tekhnika. 2021;(1):48-55. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-1-48-55

Views: 109


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)