Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Mathematical model of functioning of multisensor converter of binary mechanical signals in electric on the basis of fiber-optic digital-to-analog converter

https://doi.org/10.32446/0368-1025it.2020-2-20-28

Abstract

The design and operation principle of a multisensor converter of binary mechanical signals into electrical signals consisting of a fiber-optic digital-analog converter, a photo amplifier and a voltage-to-code converter with double integration are considered. A generalized mathematical model of multisensor converter functioning has been developed, which combines particular mathematical models of fiber-optic digital-to-analog converter, photo-amplifier and voltage-to-code converter with double integration. The mathematical model of functioning of the multisensor converter in the form of analytical expressions for definition of the output electric code depending on values of bit digits of the input mechanical code taking into account a complex of constructive, circuit and power parameters of the converter is developed. The analytical description of the signal in the frequency converter in code, using which an algorithm is developed for numerical analysis of mathematical models of the functioning of the devices under study, providing the maximum permissible values of the instrumental errors of manufacture of the transducer elements in which is implemented the complete accuracy of the device. The presented results can be used for the development of multisensor converters of binary displacements of control systems, control and monitoring of energy-saturated objects, for which high noise immunity, electrical neutrality, low chemical activity and information security are of paramount importance.

About the Authors

V. M. Grechishnikov
Samara national research University named after academician S. P. Korolev
Russian Federation

Samara



E. G. Komarov
Moscow Bauman state technical University (national research University)
Russian Federation

 Moscow



References

1. Garmash V. B., Egorov F. A., Kolomiets L. N., Neugodnikov A. P., Pospelov V. I., Photon Express, 2005, no. 6 (46), pp. 128–140 (in Russian).

2. Babin S. A., Glushko S. K., Tsyba A. M., Cheido G. P., Shelemba I. S., Shakirov S. R., Computational technologies, 2013, vol. 18, Special issue, pp. 95–100 (in Russian).

3. Shishkin V. V., Churin A. E., Harenko D. S., Shelemba I. S., Photon Express, 2013 no. 6, pp. 22–23 (in Russian).

4. Frieden J., Modern sensor. Handbook, Moscow, Technosphere Publ., 2006, 592 p. (in Russian).

5. Udd E., Fiber optic sensors, Moscow, Technosphere Publ., 2008, 526 p. (in Russian).

6. Leonovich, G. I., Matyunin S. A., Levochkina N. A., Vestnik of Samara aerospace University, 2011, no. 7 (31), pp. 123–127.

7. Buymistruk G., Control engineering RUSSIA, 2013, no. 3 (45), pp. 34–40 (in Russian).

8. Hui R., O’Sullivan M., Fiber Optic Measurement Techniques, Amsterdam/London, Academic Press, 2009, 672 p. DOI:10.1016/B978-0-12-373865-3.X0001-8

9. Vargel S. V., Fiber Bragg gratings. St. Petersburg: ITMO University, 2015, p. 65 (in Russian).

10. Samuel Chin-Chong Tseng, US Patent no.3985423 (12 October 1976).

11. Yong-Kai Chen, Andreas Leven, Kun-Yii Tu., US Patent no. 7061414B2 (1 June 2006).

12. Zelensky V. A., Doctoral dissertation (in Technical Science). (MGUPI, Moscow, 2010).

13. Teryaeva O. V., Candidate’ s dissertation (in Technical Science). (Samara University, Samara, 2017).

14. Grechishnikov V. M., Teryaeva O. V., Russian aeronautics, 2016. no. 3, pp. 122–128.

15. Grechishnikov V. M., Teryaev O. V., Aref’ev V. V., Patent RF no. 2660623, Byull. Izobret., no. 19 (2018).

16. Grechishnikov V. M., Teryaev O. V., Aref’ev V. V., Patent RF no. 173159, Byull. Izobret., no. 23 (2017).

17. Domrachev V. G., Meiko B. S., Digital angle converters: principles of construction, accuracy theory, control methods, Moscow, Energoatomizdat Publ., 1984, 328 p. (in Russian).

18. Tikhonov B. N., Khodzhaev I. A., Metrology and electroradio measurements in telecommunication systems: monografi ya, Moscow, Telecom Publ., 2017, 398 p. (in Russian).

19. Gutnikov V. S., Integrated electronics in measuring devices, Leningrad, Energoatomizdat Publ., 1988, 304 p. (in Russian).

20. Boukreev I. N., Goryachev V. I., Mansurov B. M., Microelectronic circuits digital device, Moscow, Technosphere Publ., 2009, 712 p. (in Russian).

21. Mukhanin L. G. Circuitry of measuring devices, SaintPetersburg, LAN Publ., 2009, 288 p. (in Russian).

22. Grechishnikov V. M., Konyukhov N. E., Optoelectronic digital displacement sensors with integrated fi ber-optic communication lines, Moscow, Energoatomizdat Publ., 1992, 160 p. (in Russian).


Review

For citations:


Grechishnikov V.M., Komarov E.G. Mathematical model of functioning of multisensor converter of binary mechanical signals in electric on the basis of fiber-optic digital-to-analog converter. Izmeritel`naya Tekhnika. 2020;(2):20-28. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-2-20-28

Views: 119


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)