

Stochastic evaluation of orientation parameters for an antenna complex using strapdown inertial system measurements
https://doi.org/10.32446/0368-1025it.2020-2-11-19
Abstract
When solving the problem of high-precision spatial orientation of antennas of radio engineering complexes placed on high-rise masts of various designs, one of the main tasks is to increase the accuracy of their angular orientation in the conditions of inevitable disturbances of the mast base (due to wind disturbances, operation of various units, etc.) and interference of measurement of antenna orientation parameters by various measuring systems. Currently used methods based on measurements of satellite navigation systems and autonomous measurements of attitude and heading reference system do not provide the required accuracy for solving the problem of antenna orientation, located on a highly dynamic mobile base. This circumstance is due both to the weak noise immunity of algorithms of information processing and the inability of accounting for the dynamic properties of orientation parameters measured also in the presence of noise of high intensity, whose properties also usually are not taken into account. In this regard, the article considers a dynamic algorithm for estimating the stochastic parameters of the antenna orientation of the radio engineering complexes, invariant to the nature of the movement of the mast base and providing stability and the required accuracy of the evaluation under the most general assumptions about the nature of interference of the sensing elements attitude and heading reference system. As the observed state vector – the vector of antenna orientation parameters, the vector of Rodriguez–Hamilton parameters is used, and as the vector of observation of it – the vector of measurements of angular velocity sensors of a strapdown inertial system, which consists of three accelerometers and three angular velocity sensors located orthogonally in the center of mass of the antenna. Based on the nonlinear stochastic equations of dynamics of change of the vector of parameters of the current orientation attitude and heading reference system on the moving base and stochastic models of the measuring signals sensing elements attitude and heading reference system, a non-linear (generalized) Kalman filter, providing the desired solution of the problem of estimation of the parameters of the current orientation of the antenna on the perturbed basis, was built. The results of the numerical experiment allow us to conclude that it can be used to solve the problem of operational orientation of radio engineering complexes antennas placed on masts, using medium-and high-precision attitude and heading reference system without correction for a long time.
About the Authors
S. V. SokolovRussian Federation
Sergey V. Sokolov
Moscow
V. A. Pogorelov
Russian Federation
Vadim A. Pogorelov
Moscow
A. B. Shatalov
Russian Federation
Andrei B. Shatalov
Serpukhov, Moscow region
References
1. Davide Dardari, Emanuela Falletti, Marco Luise, Satellite and Terrestrial Radio Positioning Techniques. A Signal Processing Persective, Elsevier, Inc., 2011.
2. Zajcev D. V., Mnogopozicionnye radiolokacionnye sistemy. Metody i algoritmy obrabotki informacii v usloviyah pomekh, Moscow, Radiotekhnika Publ., 2007, 96 p. (in Russian).
3. Konovalov A. A., Osnovy traektornoj obrabotki radiolokacionnoj informacii, Saint Petersburg, ETU LETI Publ., 2013, 164 p. (in Russian).
4. Krasil’shchikov M. N., Sebryakov G. G., Sovremennye informacionnye tekhnologii v zadachah navigacii i navedeniya bespilotnyh manevrennyh letatel’nyh apparatov, Moscow, Fizmatlit Publ., 2009, 556 p. (in Russian).
5. Sokolov S. V., Pogorelov V. A., Shatalov A. B., Russian Aeronautics, 2019, vol. 62, no 1, pp. 42–51. DOI:10.3103/S1068799819010069
6. Sokolov S. V., Pogorelov V. A., Measurement Techniques, 2019, vol. 62, no. 3, pp. 30–36. DOI:10.1007/s11018-019-01610-4UDC62-50
7. Kinkul’kin I. E., Global’nye navigacionnye sputnikovye sistemy. Algoritmy funkcionirovaniya apparatury potrebleniya: monografi ya, Moscow, Radiotekhnika Publ., 2018, 328 p. (in Russian). DOI:10.18127.B9785931081755
8. Rozenberg I. N., Sokolov S. V., Umanskij V. I., Pogorelov V. A., Teoreticheskie osnovy tesnoj integracii inercial’nosputnikovyh navigacionnyh system, Moscow, Fizmatlit Publ., 2018, 312 p. (in Russian).
9. Sokolov S. V., Pogorelov V. A., Stohasticheskaya ocenka, upravlenie i identifi kaciya v vysokotochnyh navigacionnyh sistemah, Moscow, Fizmatlit Publ., 2016, 264 p. (in Russian).
10. Sokolov S. V., Pogorelov V. A., Osnovy sinteza mnogostrukturnyh besplatformennyh navigacionnyh system, Moscow, Fizmatlit Publ., 2009, 190 p. (in Russian).
11. Emel’yancev G. I., Stepanov A. P., Integrirovannye inercial’no-sputnikovye sistemy orientacii i navigacii, Saint Petersburg, Concern CSRI Elektropribor Publ., JSC, 2016, 394 p. (in Russian).
12. Vaknin E., Klein I., Gyroscopy and Navigation, 2016, vol. 7, no. 2, pp. 145–151. DOI:10.1134/S2075108716020115
13. Thomas Brunner, Sébastien Changey, Emmanuel Pecheur, Jean-Philippe Lauffenburger, Michel Basset, Evaluation of attitude estimation algorithms using absolute magnetic reference data: Methodology and results. Proceedings of the Position, Location and Navigation Symposium – PLANS 2014, Monterey, United States May 5–8, 2014, pp. 212–218. DOI:10.1109/PLANS.2014.6851378
14. Lukasevich V. I., Pogorelov V. A., Sokolov S. V. Radiotekhnika, Moscow, Radiotekhnika Publ., 2015, no. 6, pp. 122–132 (in Russian).
15. Sokolov S. V., Pogorelov V. A., Lukasevich V. I., Datchiki&Systemi, 2015, no. 5, pp. 8–17 (in Russian).
16. Blanch J., Walter T., Enge P., Proceedings of the IEEE (Special Centennial Issue), 2012, vol. 13. pp. 1821–830. DOI:10.1109/JPROC.2012.2190154
17. Ezzaldeen E., Knedlik S. and Loff eld O., Sensors, 2012, vol. 12.5, pp. 5310–5327. DOI:10.3390/s120505310
18. Jahromi A. J., Broumandan A., Nielsen J., Lachapelle G., International Journal of Navigation and Observation, 2012, vol. 2012, Article ID127072, pp. 1–16. DOI:10.1155/2012/127072
19. Baziar A. R., Moazedi M., Mosavi M. R., Journal of Wireless Personal Communications, 2015. vol. 83. no. 3. pp. 1955–1970. DOI:10.1007/s11277-015-2497-9
20. Bhatti J., Humphreys T. E., Journal of the Institute of Navigation, 2017, vol. 64, pp. 51–66. DOI:10.1002/navi.183
21. Psiaki M. L, O’Hanlon B. W., Powell S. P., Bhatti J. A., GPS World, 2014, vol. 25, no. 11, pp. 36–44.
22. Salychev O. S., Verifi ed approaches to inertial navigation, Мoscow, BMSTU Press Publ., 2017, 368 p.
23. Salychev O. S. Applied inertial navigation: problems and solutions, Мoscow, BMSTU Press Publ., 2004, 304 p.
24. Matveev V. V., Raspopov V. Ya., Pribory i sistemy orientacii, stabilizacii i navigacii na MEHMS datchikah, Tula, TulGU Publ., 2017, 225 p. (in Russian).
25. Chelnokov Yu. N., Kvaternionnye modeli i metody dinamiki, navigacii i upravleniya dvizheniem, Moscow, Fizmatlit Publ., 2011, 560 p. (in Russian).
26. Sinicyn I. N., Fil’try Kalmana i Pugacheva, Moscow, Logos Publ., 2006, 640 p. (in Russian).
27. Sokolov S. V., Kovalev S. M., Kucherenko P. A., Smirnov Yu. A., Metody identifi kacii nechetkih i stohasticheskih system, Moscow, Fizmatlit Publ., 2018. 432 p. (in Russian).
28.
Review
For citations:
Sokolov S.V., Pogorelov V.A., Shatalov A.B. Stochastic evaluation of orientation parameters for an antenna complex using strapdown inertial system measurements. Izmeritel`naya Tekhnika. 2020;(2):11-19. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-2-11-19