

Status and development prospects of standard means for reproducing units of volumetric activity of radon and thoron and radon flux density from the soil surface
https://doi.org/10.32446/0368-1025it.2020-1-69-73
Abstract
The approach to creating standard means for reproducing units of volumetric activity of radon and thoron and flux density of radon from the soil surface is described based on the physical principles of reproducing these units of quantities and using as technical means for reproducing bubblers with a radioactive solution of radium salt, reference capacities of known volume, emanation chambers for generation of a toron, a gamma spectrometer with a semiconductor detector from highly pure germanium and radon radiometers. Reproduction consists in the physical realization of units in accordance with their definition as applied to the formation of radon and thoron in the radioactive rows of radium and thorium. The proposed approach will allow to determine the structural, structural and other technical solutions of standard measuring instruments, as well as specific techniques and methods of working with them. The creation of standard tools and technologies for reproducing units of volumetric activity of radon and thoron and the density of radon flux from the soil surface will ensure the unity and reliability of measurements in the field of ionizing radiation, traceability of units and bringing the characteristics of national standards in line with world achievements
About the Authors
S. G. BirjukovRussian Federation
Sergey G. Birjukov
Mendeleevo, Moscow Region
O. I. Kovalenko
Russian Federation
Oleg I. Kovalenko
Mendeleevo, Moscow Region
A. A. Orlov
Russian Federation
Alexandr A. Orlov
Mendeleevo, Moscow Region
References
1. ICRP, 2010. Lung Cancer Risk from Radon and Progeny and Statement on Radon. ICRP Publication 115. Ann. ICRP 40 (1). DOI:10.1016/j.icrp.2011.08.011
2. ICRP, 2014. Radiological protection against radon exposure. ICRP Publication 126. Ann. ICRP 43(3).
3. Marenny A. M., ANRI, 1995, no. 3–4, рр. 79–84 (in Russian).
4. Zhukovsky M.V., Ekidin A.A., Gracheva A.V. et al., ANRI, 2010, no. 1 (60), pp. 37–42 (in Russian).
5. Kim B. C., Lee K. B., Park T. S., Lee J. M., Lee S. H., Oh P. J., Lee M. K., Ahn J. K., Appl. Radiat. Isot., 2012, vol. 70, pp. 1934–1939. DOI:10.1016/j.apradiso.2012.02.020
6. Dersch R., Appl. Radiat. Isot., 2004, vol. 60, pp. 387– 390. DOI:10.1016/j.apradiso.2003.11.046
7. Spring P., Nedjadi Y., Bailat C., Triscone G., Bochud F., Nucl. Instrum. Methods. Phys. Res., 2006, no. A568, pp. 752– 759. DOI:10.1016/j.nima.2006.07.055
8. Mostafa M.Y.A., Vasyanovich M., Zhukovsky M., Appl. Radiat. Isot., 2016, vol.107, pp. 109–112. DOI:10.1016/j.apradiso.2016.12.012
9. Alekseev I. V., Zanevskii A. V., Zhukov G. V., Moiseev N. N., Sepman S. V., Tereshchenko E. E., Trofi mchuk S. G., Kharitonov I. A., Shil’nikova T. I., Measurement Techniques, 2019, no. 8, pp. 3–7. DOI:10.1007/s11018-019-01675-1
10. Yakovleva V. S. Metody izmereniya plotnosti potoka radona I torona s poverhnosti poristyh materialov: monographiya, Tomsk, Tomsk Polytechnic University Publ., 2011, 174 p. (in Russian).
11. Röttger A., Honig A., Radiat. Prot. Dosimetry, 2011, vol. 145, no. 2–3, pp. 260 - 266. DOI:10.1093/rpd/ncr047
12. Röttger A., Honig A., Dersch R. et al., Appl. Radiat. Isot., 2010. vol. 68. pp. 1292–1296. DOI:10.1016/j.apradiso.2010.01.004
13. Sabot B., Pierre S., Cassette P. et al., Radiat. Prot. Dosimetry, 2015, vol. 167, no 1–3, pp. 70–74. DOI:10.1093/rpd/ncv221
Review
For citations:
Birjukov S.G., Kovalenko O.I., Orlov A.A. Status and development prospects of standard means for reproducing units of volumetric activity of radon and thoron and radon flux density from the soil surface. Izmeritel`naya Tekhnika. 2020;(1):68-72. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-1-69-73