

The working standard of the unit of power of electromagnetic waves in the frequency range from 37,5 to 220 GHz
https://doi.org/10.32446/0368-1025it.2020-1-53-58
Abstract
The possibility of using bolometric converters of microwave power from the State primary standard of the unit of power of electromagnetic waves in waveguide and coaxial paths GET 167-2017, which has a frequency range from 37,5 to 78,33 GHz, in an extended frequency range up to 220 GHz, is shown. Studies of semiconductor bolometric converters of microwave power in an extended frequency range have confirmed good agreement and smooth frequency characteristics of the effective efficiency factor of the converters. Based on the research results, the State working standard of the unit of power of electromagnetic waves of 0,1–10 mW in the frequency range from 37,5 to 220 GHz 3.1.ZZT.0288.2018 was approved. The technical characteristics of the working standard of the unit of power of electromagnetic oscillations in an extended frequency range from 37,5 to 220 GHz are given.
About the Authors
A. V. KoudelnyRussian Federation
Mendeleevo, Moscow region
I. M. Malay
Russian Federation
Mendeleevo, Moscow region
V. A. Perepelkin
Russian Federation
Mendeleevo, Moscow region
I. P. Chirkov
Russian Federation
Mendeleevo, Moscow region
References
1. Tishchenko V. A., Balakhanov M. V., Luk’yanov V. I., Perepelkin V. A., Chirkov I. P., Kolotygin C. A., Myl’nikov A. V., Sozdanie i sovershenstvovanie etalonnoi bazy v oblasti radiochastotnykh elektromagnitnykh izmerenii, Mendeleevo, VNIIFTRI Publ., 2013, pp. 112–135 (in Russian).
2. Bil’ko M. I., Tomashevskii A. K., Sharov P. P., Baimuratov E. A., Izmerenie moshchnosti na SVCh, Moscow, Sovetskoe Radio Publ., 1976 (in Russian).
3. Akhiezer A. N., Danil’chenko V. P., Sen’ko A. P., Terekhov M. V., Gordeev K. K., Kaliberda L. G., Terzhova V. P., Measurement Techniques, 1979, vol. 22, no. 7, pp. 767–771.
4. Rossiiskaya Metrologicheskaya Entsiklopediya, ed. V. V. Okrepilov, T. 1, Sankt-Peterburg, Liki Rossii Publ., 2015, 565 p. (in Russian).
5. Perepelkin V. A., Semenov V. A., Chirkov I. P., Pavlov A. V., Zhogun M. V. , Koudel’nyi A. V. Measurement Techniques, 2018, vol. 60, no. 7, pp. 973–978. DOI:10.1007/s11018-018-1303-y
6. Malai I. M. Zadachi razvitiya sistemy metrologicheskogo obespecheniya v oblasti radiotekhnicheskikh izmerenii, Proccedings of the All-Russian XI Scientifi c and Technical Conference “Metrology in radio electronics”, Mendeleevo, Russia, June, 19–21, 2018. Mendeleevo, FGUP “VNIIFTRI”, 2018. pp. 5–18.
7. Semenov V. A., Koudel’nyi A. V., Perepelkin V. A., Chirkov I. P., Al’manakh sovremennoi metrologii, 2019, no. 2, pp. 46–64 (in Russian).
8. Ronald A. Ginley, Traceability for microwave power measurements: Past, present, and future, Proceedings of the 16th Annual Wireless and Microwave Technology Conference (WAMICON-2015), Cocoa Beach, FL, USA, April 13–15, Cocoa Beach, IEEE, 2015, рp. 1–5. DOI:10.1109/WAMICON.2015.7120431
9. Fantom A. E., Radio frequency and Microwave Power Measurements, ed. A. E. Bailey, Dr. O. C. Jones, Dr. A. C. Lynch, London, Peter Peregrinus Ltd., 1990, 278 p. DOI:10.1049/pbel007e
10. By Xiaohai Cui, Yu Song Meng, Yueyan Shan and Yong Li, Microwave Power Measurements: Standards and Transfer Techniques. available at: https://www.intechopen.com/books/new-trends-and-developments-in-metrology/microwavepower-measurements-standards-and-transfer-techniques (accessed: 05.12.2019). DOI:10.5772/60442
11. Rolf H. Judaschke, Karsten Kuhlmann, Thomas M. Reichel and Werner Perndl, IEEE Transactions on Instrumentation and Measurement, 2013, vol. 64, no. 12, pp. 3440–3450. DOI:10.1109/TIM.2015.2454632
12. Koudel’nyi A. V., Myl’nikov A. V., Perepelkin V. A., Razrabotka i issledovanie poluprovodnikovykh bolometricheskikh preobrazovatelei moshchnosti SVCh okonechnogo tipa, Issledovaniya v oblasti radiotekhnicheskikh izmerenii. Сollection of proceedings, Mendeleevo, VNIIFTRI, 1987, pp. 27–34 (in Russian).
13. Igor Chirkov, Vladimir Perepelkin, Vadim Semenov, Russian Primary standards of microwave power, Procedings of the Conference on Precision Electromagnetic Measurements (CPEM-2014), “Improvement in the Evaluation of a Rectangular Waveguide Microcalorimeter Correction Factor”, Rio de Janeiro, Brazil, August 24–29, 2014, Rio de Janeiro, Brazil IEEE, 2014, pp. 166–167. DOI:10.1109/CPEM.2014.6898311
14. Weihai Fang, Growley T. R., Improvement in the Evaluation of a Rectangular Waveguide Microcalorimeter Correction Factor, Procedings of the Conference on Precision Electromagnetic Measurements (CPEM-2014) “Improvement in the Evaluation of a Rectangular Waveguide Microcalorimeter Correction Factor”, Rio de Janeiro, Brazil, August 24–29, 2014, Rio de Janeiro, Brazil, IEEE, 2014, pp. 746–747. DOI:10.1109/CPEM.2014.6898601
15. Rolf Judaschke, J. Urgen Ruhaak, IEEE Transactions on Instrumentation and Measurement, 2009, vol. 58, no. 4, pp. 1104–1108. DOI: 10.1109/TIM.2008.2012381
16. Xiaohai Cui, T. P. Crowley, IEEE Transactions on Instrumentation and Measurement 60(7). 2011, vol. 60, no. 7, pp. 2690–2695. DOI: 10.1109/TIM.2011.2130990
Review
For citations:
Koudelny A.V., Malay I.M., Perepelkin V.A., Chirkov I.P. The working standard of the unit of power of electromagnetic waves in the frequency range from 37,5 to 220 GHz. Izmeritel`naya Tekhnika. 2020;(1):52-57. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-1-53-58