

Measurements of mammalian oocytes electrical characteristics
https://doi.org/10.32446/0368-1025it.2023-5-68-74
Abstract
The development of cell engineering technologies using various electroporation modes requires knowledge of the electrical characteristics of living cells. Usually, cells are taken from laboratory animals of the same species, and the question of specifi c features of cells electrical characteristics remains open. Using the method of pulsed conductometry in an electric fi eld with rising strength, the electrical characteristics (conductivity, intensity) were measured during electroporation and electrical breakdown of oocytes membranes of mammalian species: Mus musculus (mouse), Oryctolagus cuniculus (rabbit), Sus scrofa (pig), Bos Taurus (cow) and Homo sapiens (human) were measured by pulsed conductometry in an electric fi eld with rising strength. Mathematical analysis of the experimental dependences of the conductivity of mammalian oocytes based on polynomial approximation was performed. The electrical characteristics of oocytes were obtained as a result of the analysis of approximating polynomials for the presence of maximum curvature (electric breakdown of the membrane), infl ection points and local extrema (degree of reversible electroporation). Signifi cant species differences in the measured electrical characteristics of the studied oocytes were established. The measurement results showed a signifi cant species specifi city of electrical characteristics, refl ecting the different resistance of oocytes to electrical breakdown and the degree of reversible electroporation of membranes, which is probably associated with the peculiarities of their lipid composition, the integrity of the cytoskeleton structure, and the resistance of cells as a whole to the impact of a pulsed fi eld. The results obtained can be used to implement various modes of electromanipulation with a living cell – electrotransfection of DNA, genes, electrofusion, as well as for point lysis of cells with a lost apoptosis mechanism.
About the Authors
V. A. ShigimagaUkraine
Victor A. Shigimaga
Kharkov
A. A. Kolesnikova
Ukraine
Alla A. Kolesnikova
Kharkov
E. V. Somova
Ukraine
Elena V. Somova
Kharkov
A. A. Tishchenko
Ukraine
Aleksey A. Tishchenko
Kharkov
A. M. Feskov
Ukraine
Alexander M. Feskov
Kharkov
References
1. Skanavi G. I. Fizika dielecktrikov (oblast silnych polej), Мoskow, Fizmatlit Publ., 1958, 907 p. (In Russ.)
2. Von Walter Franz. Dielektrischer Durchschlag, Berlin u. a., SpringerVerl., 1956
3. Ushakov V. Ya. Impulsnyj elektricheskij proboj zhydkostej, Tomsk, TGU Publ., 1975, 256 p. (In Russ.)
4. Adamchevskij I. Elektricheskaya provodimost zhydkich dielektrikov, Leningrad, Energiya Publ., 1977, 295 p. (In Russ.)
5. Beyer М., Bek V., Меller К., Tsayengl V. Тechnika vysokich napryazhenij: teoreticheskiye i practicheskiye osnovy primeneniya, Мoskow, Energopromizdat Publ., 1989, 560 p. (In Russ.)
6. Dolginov A. I. Technika vysokich napryazhenij v elektroenergetike, Мoskow, Energiya Publ., 1968, 464 p. (In Russ.)
7. Kramar P., Miklavčič D., Lebar A. M., Bioelectrochemistry, 2007, vol. 70, no 1, pp. 23–27. https://doi.org/10.1007/978-3-540-73044-6_147
8. Karpunin D. V.Extented abstract of candidate’s dissertation in Physics and Mathematics Sciences (Moscow Institute of Physics and Technology (State University), Мoscow, 2005)
9. Bogatyryeva N. E. Extented abstract of candidate’s dissertation in Physics and Mathematics Sciences (Moscow Medical Academy. I. M. Sechenova), Мoscow, 1999)
10. Chan K. L., Gascoiyne R. C., Becker F. F., Pethig R. Biochim. Biophys. Acta, 1997, vol. 1349, pp. 182–96. https://doi.org/10.1016/s0005-2760(97)00092-1
11. Advances in Planar Lipid Bilayers and Liposomes, The Elsevier book-series, vol. 21, 1st edition, eds. Ales Iglic, Chandrashekhar Kulkarni, Michael Rappolt, Academic Press, 2015, 360 р.
12. Di Muzio M., Millan-Solsona R., Dols-Perez A. et al. Journal of Nanobiotechnology, 2021, vol. 19, 167. https://doi.org/10.1186/s12951-021-00912-6
13. Galimzyanov Т. R., Моlotkovskiy R. Yu., Каlutskiy М. А. et al. Lateralnoe vzaimodeystviye vliyayet na kinetiku matastabilnych skvoznych por v lipidnych membranach, Biologicheskiye membrany: Zhurnal membrannoj i kletochnoj biologii, 2020, vol. 37, no. 2, pp. 83–93. (In Russ.) https://doi.org/10.31857/S0233475520010053
14. Shigimaga V. A. Impulsnaya konduktometriya kletok zhyvotnych i zhidkich sred: monografi ya, Kharkov, Planeta-Print Publ., 2021, 345 p. (In Russ.)
15. Shigimaga V. A. Measurement Techniques, 2015, vol. 57, no. 10, pp. 1213–1218. https://doi.org/10.1007/s11018-015-0605-6
16. Shigimaga V. A. Measurement Techniques, 2014, vol. 57, no. 2, pp. 213–217. https://doi.org/10.1007/s11018-014-0433-0
17. Shigimaga V. A., Megel’ Yu. Ye. Issledovaniye provodimosti kletok pri izmenenii osmoticheskoy kontsentratsii sredy, Vostochno-yevropeyskiy zhurnal peredovykh tekhnologiy, 2011, no. 2/5(50), pp. 53–55 (In Russ.)
18. Miklavčič D. Handbook of Electroporation, 1st ed. Springer Inter Publ., Switzerland, 2017, 2956 p. https://doi.org/10.1007/978-3-319-32886-7
19. Smolyaninova E. I., Shigimaga V. A., Strikha O. A. et al. Effect of cryopreservation stages by vitrifi cation in ethylene glycol and sucrose medium on 2-cell murine embryos electric conductivity, Problems of Cryobiology and Cryomedicine, 2013, vol. 23(3), pp. 228–239.
20. Craven L., Tang M.-X., Gorman G. S. et al. Human Reproduction Update, 2017, vol. 23(5), pp. 501–519. https://doi.org/10.1093/humupd/dmx018
21. Shigimaga V. A. Measurement Techniques, 2013, vol. 55, no 11, pp. 1294–1300. https://doi.org/10.1007/s11018-013-0124-2
22. Hyslop L., Blakeley P., Craven L. et al. Nature, 2016, vol. 534, pp. 383–386. https://doi.org/10.1038/nature18303
23. Chia G., Agudo J., Treff N. et al. Nat Cell Biol, 2017, vol. 19(4), pp. 282–291. https://doi.org/10.1038/ncb3485
24. Moros-Nicolás C., Chevret P., Jiménez-Movilla M. et al. Inter J Mol Sci, 2021, vol. 22, 3276. https://doi.org/10.3390/ijms22063276
25. Claw K. G., Swanson W. J., Annual Review of Genomics and Human Genetics, 2012, vol. 13, pp. 109–125. https://doi.org/10.1146/annurev-genom-090711-163745
26. McKeegan P. J., Sturmey R. G. Reprod, Fertility and Develop, 2011, vol. 24(1), pp. 59–67. https://doi.org/10.1071/RD11907
27. McEvoy T. G., Coull G. D., Broadbent P. J. et al. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida, J. Reprod. Fert, 2000, vol. 118, pp. 163–170.
28. Genikot G., Leroy J. L., Soom A. V., Donnay I. Theriogenology, 2005, vol. 63, pp. 1181–1194. https://doi.org/10.1016/j.theriogenology.2004.06.006
29. Mattoras R., Ruiz J. I. Human Reproduction, 1998, vol. 13, pp. 2227–2230. https://doi.org/10.1093/humrep/13.8.2227
30. Kim H. B., Lee S., Chung J. H. et al. Applied Biochem Biotech, 2020, vol. 191, pp. 1545–1561. https://doi.org/10.1007/s12010-020-03271-4
31. Balantič K., Miklavčič D., Križaj I., Kramar P. Acta Chimica Slovenica, 2021, vol. 68(4), pp. 753–764. https://doi.org/10.17344/acsi.2021.7198
32. Graybill P. M., Davalos R. V., Cancers (Basel), 2020, vol. 12(5), 1132. https://doi.org/10.3390/cancers12051132
Review
For citations:
Shigimaga V.A., Kolesnikova A.A., Somova E.V., Tishchenko A.A., Feskov A.M. Measurements of mammalian oocytes electrical characteristics. Izmeritel`naya Tekhnika. 2023;(5):68-74. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-5-68-74