Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Measurements of mammalian oocytes electrical characteristics

https://doi.org/10.32446/0368-1025it.2023-5-68-74

Abstract

The development of cell engineering technologies using various electroporation modes requires knowledge of the electrical characteristics of living cells. Usually, cells are taken from laboratory animals of the same species, and the question of specifi c features of cells electrical characteristics remains open. Using the method of pulsed conductometry in an electric fi eld with rising strength, the electrical characteristics (conductivity, intensity) were measured during electroporation and electrical breakdown of oocytes membranes of mammalian species: Mus musculus (mouse), Oryctolagus cuniculus (rabbit), Sus scrofa (pig), Bos Taurus (cow) and Homo sapiens (human) were measured by pulsed conductometry in an electric fi eld with rising strength. Mathematical analysis of the experimental dependences of the conductivity of mammalian oocytes based on polynomial approximation was performed. The electrical characteristics of oocytes were obtained as a result of the analysis of approximating polynomials for the presence of maximum curvature (electric breakdown of the membrane), infl ection points and local extrema (degree of reversible electroporation). Signifi cant species differences in the measured electrical characteristics of the studied oocytes were established. The measurement results showed a signifi cant species specifi city of electrical characteristics, refl ecting the different resistance of oocytes to electrical breakdown and the degree of reversible electroporation of membranes, which is probably associated with the peculiarities of their lipid composition, the integrity of the cytoskeleton structure, and the resistance of cells as a whole to the impact of a pulsed fi eld. The results obtained can be used to implement various modes of electromanipulation with a living cell – electrotransfection of DNA, genes, electrofusion, as well as for point lysis of cells with a lost apoptosis mechanism. 

About the Authors

V. A. Shigimaga
State Biotechnological University
Ukraine

Victor A. Shigimaga

Kharkov



A. A. Kolesnikova
Danilevsky Institute of Endocrine Pathology Problems
Ukraine

Alla A. Kolesnikova

Kharkov



E. V. Somova
Medical Center for Human Reproduction “Clinic of Professor A. M. Feskov”
Ukraine

Elena V. Somova

Kharkov



A. A. Tishchenko
Medical Center for Human Reproduction “Clinic of Professor A. M. Feskov”
Ukraine

Aleksey A. Tishchenko

Kharkov



A. M. Feskov
Medical Center for Human Reproduction “Clinic of Professor A. M. Feskov”
Ukraine

Alexander M. Feskov

Kharkov



References

1. Skanavi G. I. Fizika dielecktrikov (oblast silnych polej), Мoskow, Fizmatlit Publ., 1958, 907 p. (In Russ.)

2. Von Walter Franz. Dielektrischer Durchschlag, Berlin u. a., SpringerVerl., 1956

3. Ushakov V. Ya. Impulsnyj elektricheskij proboj zhydkostej, Tomsk, TGU Publ., 1975, 256 p. (In Russ.)

4. Adamchevskij I. Elektricheskaya provodimost zhydkich dielektrikov, Leningrad, Energiya Publ., 1977, 295 p. (In Russ.)

5. Beyer М., Bek V., Меller К., Tsayengl V. Тechnika vysokich napryazhenij: teoreticheskiye i practicheskiye osnovy primeneniya, Мoskow, Energopromizdat Publ., 1989, 560 p. (In Russ.)

6. Dolginov A. I. Technika vysokich napryazhenij v elektroenergetike, Мoskow, Energiya Publ., 1968, 464 p. (In Russ.)

7. Kramar P., Miklavčič D., Lebar A. M., Bioelectrochemistry, 2007, vol. 70, no 1, pp. 23–27. https://doi.org/10.1007/978-3-540-73044-6_147

8. Karpunin D. V.Extented abstract of candidate’s dissertation in Physics and Mathematics Sciences (Moscow Institute of Physics and Technology (State University), Мoscow, 2005)

9. Bogatyryeva N. E. Extented abstract of candidate’s dissertation in Physics and Mathematics Sciences (Moscow Medical Academy. I. M. Sechenova), Мoscow, 1999)

10. Chan K. L., Gascoiyne R. C., Becker F. F., Pethig R. Biochim. Biophys. Acta, 1997, vol. 1349, pp. 182–96. https://doi.org/10.1016/s0005-2760(97)00092-1

11. Advances in Planar Lipid Bilayers and Liposomes, The Elsevier book-series, vol. 21, 1st edition, eds. Ales Iglic, Chandrashekhar Kulkarni, Michael Rappolt, Academic Press, 2015, 360 р.

12. Di Muzio M., Millan-Solsona R., Dols-Perez A. et al. Journal of Nanobiotechnology, 2021, vol. 19, 167. https://doi.org/10.1186/s12951-021-00912-6

13. Galimzyanov Т. R., Моlotkovskiy R. Yu., Каlutskiy М. А. et al. Lateralnoe vzaimodeystviye vliyayet na kinetiku matastabilnych skvoznych por v lipidnych membranach, Biologicheskiye membrany: Zhurnal membrannoj i kletochnoj biologii, 2020, vol. 37, no. 2, pp. 83–93. (In Russ.) https://doi.org/10.31857/S0233475520010053

14. Shigimaga V. A. Impulsnaya konduktometriya kletok zhyvotnych i zhidkich sred: monografi ya, Kharkov, Planeta-Print Publ., 2021, 345 p. (In Russ.)

15. Shigimaga V. A. Measurement Techniques, 2015, vol. 57, no. 10, pp. 1213–1218. https://doi.org/10.1007/s11018-015-0605-6

16. Shigimaga V. A. Measurement Techniques, 2014, vol. 57, no. 2, pp. 213–217. https://doi.org/10.1007/s11018-014-0433-0

17. Shigimaga V. A., Megel’ Yu. Ye. Issledovaniye provodimosti kletok pri izmenenii osmoticheskoy kontsentratsii sredy, Vostochno-yevropeyskiy zhurnal peredovykh tekhnologiy, 2011, no. 2/5(50), pp. 53–55 (In Russ.)

18. Miklavčič D. Handbook of Electroporation, 1st ed. Springer Inter Publ., Switzerland, 2017, 2956 p. https://doi.org/10.1007/978-3-319-32886-7

19. Smolyaninova E. I., Shigimaga V. A., Strikha O. A. et al. Effect of cryopreservation stages by vitrifi cation in ethylene glycol and sucrose medium on 2-cell murine embryos electric conductivity, Problems of Cryobiology and Cryomedicine, 2013, vol. 23(3), pp. 228–239.

20. Craven L., Tang M.-X., Gorman G. S. et al. Human Reproduction Update, 2017, vol. 23(5), pp. 501–519. https://doi.org/10.1093/humupd/dmx018

21. Shigimaga V. A. Measurement Techniques, 2013, vol. 55, no 11, pp. 1294–1300. https://doi.org/10.1007/s11018-013-0124-2

22. Hyslop L., Blakeley P., Craven L. et al. Nature, 2016, vol. 534, pp. 383–386. https://doi.org/10.1038/nature18303

23. Chia G., Agudo J., Treff N. et al. Nat Cell Biol, 2017, vol. 19(4), pp. 282–291. https://doi.org/10.1038/ncb3485

24. Moros-Nicolás C., Chevret P., Jiménez-Movilla M. et al. Inter J Mol Sci, 2021, vol. 22, 3276. https://doi.org/10.3390/ijms22063276

25. Claw K. G., Swanson W. J., Annual Review of Genomics and Human Genetics, 2012, vol. 13, pp. 109–125. https://doi.org/10.1146/annurev-genom-090711-163745

26. McKeegan P. J., Sturmey R. G. Reprod, Fertility and Develop, 2011, vol. 24(1), pp. 59–67. https://doi.org/10.1071/RD11907

27. McEvoy T. G., Coull G. D., Broadbent P. J. et al. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida, J. Reprod. Fert, 2000, vol. 118, pp. 163–170.

28. Genikot G., Leroy J. L., Soom A. V., Donnay I. Theriogenology, 2005, vol. 63, pp. 1181–1194. https://doi.org/10.1016/j.theriogenology.2004.06.006

29. Mattoras R., Ruiz J. I. Human Reproduction, 1998, vol. 13, pp. 2227–2230. https://doi.org/10.1093/humrep/13.8.2227

30. Kim H. B., Lee S., Chung J. H. et al. Applied Biochem Biotech, 2020, vol. 191, pp. 1545–1561. https://doi.org/10.1007/s12010-020-03271-4

31. Balantič K., Miklavčič D., Križaj I., Kramar P. Acta Chimica Slovenica, 2021, vol. 68(4), pp. 753–764. https://doi.org/10.17344/acsi.2021.7198

32. Graybill P. M., Davalos R. V., Cancers (Basel), 2020, vol. 12(5), 1132. https://doi.org/10.3390/cancers12051132


Review

For citations:


Shigimaga V.A., Kolesnikova A.A., Somova E.V., Tishchenko A.A., Feskov A.M. Measurements of mammalian oocytes electrical characteristics. Izmeritel`naya Tekhnika. 2023;(5):68-74. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-5-68-74

Views: 129


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)