Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Evaluation of the possibility of using particles of an aerodisperse system for dynamic aerosol scintigraphy of the lungs

https://doi.org/10.32446/0368-1025it.2023-5-61-67

Abstract

As a carrier marker ( 99mTc) for studying the processes of deposition of inhaled substances and their removal from the lungs or mucociliary clearance, which are the leading protective mechanisms of the respiratory organs, albumin macroaggregates are considered as a carrier marker candidate. They are intended for introduction into the respiratory tract by inhalation for dynamic lung scintigraphy. However, its aerodynamic properties, on which the possibility and expediency of such a targeted use depend, have not been studied. To study the aerodynamic properties of albumin macroaggregates and to determine the possibilities of its use in aerosol form for dynamic lung scintigraphy in order to assess the processes of deposition of inhaled substances and mucociliary clearance. An aerosol from a suspension of albumin macroaggregates in distilled water was generated by an ultrasonic inhaler. The dispersion of the generated aerosol was studied by laser spectrometry. The protein content in the initial suspension and dispersible aerosol was determined by the immunochemical method. The shape and morphology of the particles were studied using scanning electron microscopy. The dynamic study of the suspension indicated that its particles are involved in the aerosol generated from the suspension. The dispersion of the latter averaged about 5 μm and did not signifi cantly depend on the concentration of the radiopharmaceutical and did not depend on the studied intensity of dispersion and air fl ow rate in their extreme parameters (minimum/maximum) set using an inhaler. The morphology of albumin macroaggregates particles was characterized by a complex shape and roughness. The aerodynamic characteristics of albumin macroaggregates are not optimal for studying the processes of deposition and mucociliary clearance. However, a fi nal presentation requires a direct assessment of the deposition of the inhaled radioaerosol generated from this preparation. 

About the Authors

V. I. Kobylyansky
Pulmonology Scientific Research Institute of under Federal Medical and Biological Agency of Russia
Russian Federation

Viacheslav I. Kobylyansky

Moscow



T. V. Kudasheva
Federal Scientific and Clinical Center of the Federal Medical and Biological Agency of Russia
Russian Federation

Tatyana V. Kudasheva

Moscow



M. G. Berezkina
Federal Scientific and Clinical Center of the Federal Medical and Biological Agency of Russia
Russian Federation

Matina G. Berezkina

Moscow



T. M. Magomedov
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Timur M. Magomedov

Mendeleevo, Moscow region



D. I. Belenkii
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Dmitrii I. Belenkii

Mendeleevo, Moscow region



O. B. Chechetkina
Federal Scientific and Clinical Center of the Federal Medical and Biological Agency of Russia
Russian Federation

Olga B. Chechetkina

Moscow



References

1. Krivonogov N. G., Zavadovsky K. V. Radionuklidnaya diagnostika v pul’monologii. Nacional’noe rukovodstvo po radionuklidnoj diagnostike, in 2 vol., ed. Yu. B. Lishmanov, V. I. Chernov, Tomsk, STT Publ., 2010, pp. 163–190 (In Russ)

2. Chokkappan K., Kannivelu A., Srinivasan S., Babut S. B. Annals of Thoracic Medicine, 2016, vol. 11(2), рр. 155–160. http://doi.org/10.4103/1817-1737.180020

3. Kobylyansky V. I. Mukociliarnaya sistema. Fundamental’nye i prikladnye aspekty, Moscow, Binom Publ., 2008, 416 p. (In Russ.)

4. Kobylyansky V. I. Metody issledovaniya mukociliarnoj sistemy: vozmozhnosti i perspektivy, Terapevticheskii Arkhiv, 2001, no. 3, pp. 73–76 (In Russ.)

5. Grosser O. S., Ruf J., Kupitzm D., et al. Journal of Nuclear Medicine, 2016, vol. 57(6), 9. http://doi.org/10.2967/jnumed.115.169987

6. Scheuch G., Bennett W., Borgström L., et al. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2010, vol. 23, no. S2, pp. 39–57. https://doi.org/10.1089/jamp.2010.0839

7. Balakhanov M. V. O sozdanii sistemy metrologicheskogo obespecheniya izmerenij dispersnyh parametrov aerozolej i vzvesej, Almanac of Modern Metrology, 2014, no. 1, pp. 185–232 (In Russ.)

8. Darquenne C. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2020, vol. 33, no. 4, pp. 181–185. https://doi.org/10.1089/jamp.2020.29029.cd

9. Benumof and Hagbergs airway management (third edition), ed. by Carin A. Hagberg, Joseph C. Gabel, Elsevier, 2013, pp. 159– 183. https://doi.org/10.1016/B978-1-4377-2764-7.00006-3

10. Canziani L., Marenco M., Cavenaghi G., et al. Molecules, 2022, vol. 27, 404. https://doi.org/10.3390/molecules27020404

11. Ament S. et al. PET Lung Ventilation/Perfusion Imaging Using 68Ga Aerosol (Galligas) and 68Ga-Labeled Macroaggregated Albumin. In: Baum, R., Rösch, F. (eds) Theranostics, Gallium-68, and Other Radionuclides. Recent Results in Cancer Research, 2013, vol. 194, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27994-2_22

12. Gandhi S. J., Babu S., Subramanyam P., Shanmuga Sundaram P. Indian J. Nucl. Med., 2013, vol. 28(3), pp. 152–162. https://doi.org/10.4103/0972-3919.119546

13. Fazio F., Lafortuna C. L. Respiration, 1986, vol. 50(1), рр. 62– 65. https://doi.org/10.1159/000194908

14. Chambarlain M. J., Morgan W. K. C., Vinitski S. Clin Sci (Lond), 1983, vol. 64(1), pp. 69–78. https://doi.org/10.1042/cs0640069

15. Morgan W. K. C., Ahmad D., Chamberlain M. J., Clague H. W., Pearson M. G., Vinitski S. Respiration Physiology, 1984, vol. 56, iss. 3, pp. 327–338. https://doi.org/10.1016/0034-5687(84)90068-9

16. SU 1387982 A1. Kobylyansky V. I., Artyushkin A. V. A method for determining the excretory function of the lungs. 1988 (In Russ.)

17. SU 1602469 A1. Kobylyansky V. I. A method for determining the function of the mucociliary apparatus of the lungs. 1990 (In Russ.)

18. Persico M. G., Marenco M., De Matteis G., et al. Contrast Media Mol. Imaging, 2020, vol. 22, 3629705. https://doi.org/10.1155/2020/3629705

19. Hung J. C., Redfern M. G., Mahoney D. W., Thorson L. M., Wiseman G. A. J. Am. Pharm. Assoc. (Wash), 2000, vol. 40(1), pp. 46–51. https://doi.org/10.1016/s1086-5802(16)31035-x

20. Petriev V. M., Stepchenkov V. N., Khachirov Dj. G. Fizicheskie i nekotorye radiohimicheskie svojstva mikrosfer al’bumina, ispol’zuemyh v radionuklidnoj diagnostike], Isotopenpraxis Isotopes in Environmental and Health Studies, 1979, vol. 15, iss. 1, pp. 22–25. (In Russ.) https://doi.org/10.1080/10256017908544275


Review

For citations:


Kobylyansky V.I., Kudasheva T.V., Berezkina M.G., Magomedov T.M., Belenkii D.I., Chechetkina O.B. Evaluation of the possibility of using particles of an aerodisperse system for dynamic aerosol scintigraphy of the lungs. Izmeritel`naya Tekhnika. 2023;(5):61-67. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-5-61-67

Views: 215


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)