Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Relative acoustic gas thermometry setup for low temperature range from 4,2 to 80 K

https://doi.org/10.32446/0369-1025it.2020-1-45-52

Abstract

Relative acoustic gas thermometry setup is described. Described setup was developed and tested in VNIIFTRI. The setup is designed for the measurement of thermodynamic temperature in low temperature range down to 4,2 K. Main part of the setup is resonator with reduced cavity diameter. Reduction of resonator dimension lead to several times reduction of cooled parts of the setup with respect to the setup previously developed in VNIIFTRI. This decreases liquid nitrogen and liquid helium consumption required for cooling of resonator. Moreover, reduction of the mass of cooling parts reduces time required for temperature stabilization and thus measurement time. In the work the tests’ results of operation of main parts of the setup are presented.

About the Authors

V. G. Kytin
Russian metrological institute of technical physics and radio engineering measurements; M. V. Lomonosov Moscow State University
Russian Federation

Vladimir G. Kytin

Mendeleevo, Moscow region



M. Yu. Ghavalyan
Russian metrological institute of technical physics and radio engineering measurements
Russian Federation

Mamikon Yu. Ghavalyan

Mendeleevo, Moscow region



B. G. Potapov
Russian metrological institute of technical physics and radio engineering measurements
Russian Federation

Boris G. Potapov

Mendeleevo, Moscow region



E. G. Aslanyan
Russian metrological institute of technical physics and radio engineering measurements
Russian Federation

Eduard G. Aslanyan

Mendeleevo, Moscow region



A. N. Shchipunov
Russian metrological institute of technical physics and radio engineering measurements
Russian Federation

Andrey N. Shchipunov

Mendeleevo, Moscow region



References

1. Moldover M. R., Gavioso R. M., Mehl J. B., Pitre L., Podesta M., Zhang J. T., Metrologia, 2014, vol. 51, pp. R1–R19. DOI:10.1088/0026-1394/51/1/R1

2. Moldover M. R., Trusler J. P. M., Edwards T. J., Mehl J. B., Davis R. S., J. Res. Natl. Inst. Stand. Technol., 1988, vol. 93, pp. 93–173. DOI:10.1103/PhysRevLett.60.249

3. Pitre L., Sparasci F., Truong D., Guillou A., Risegari L., Himbert M. E., Int. J. Thermophys, 2011, vol. 32, pp. 1825–1886. DOI:10.1007/s10765-011-1023-x

4. Lin H., Feng X. J., Gillis K. A., Moldover M. R., Zhang J. T., Sun J. P., Duan Y. Y., Metrologia, 2013, vol. 50, pp. 417–432. DOI:10.1088/0026-1394/50/5/417

5. Pitre L., Risegari L., Sparasci F., Plimmer M. D., Himbert M. E., A Giuliano Albo P. A., Metrologia, 2015, vol. 52, pp. S263–S273. DOI:10.1088/0026-1394/52/5/S263

6. Gaviosso R. M., Ripa D. M., Steur P. P. M., Gaiser C., Truong D., Guianvarc’h C., Tarizzo P., Stuart F. M., Dematteis R., Metrologia, 2015, vol. 52, pp. S274–S304. DOI:10.1088/0026-1394/52/5/S274

7. Pitre L., Moldover M. R., Tew W. L., Metrologia, 2006, vol. 43, pp. 142–162. DOI:10.1088/0026-1394/43/1/020

8. Mehl J. B., Metrologia, 2009, vol. 46, pp. 554–559. DOI:10.1088/0026-1394/46/5/020

9. Podesta M., Underwood R., Sutton G., Morantz P., Harris P., Mark D. F., Stuart F. M., Vargha G., Machin G., Metrologia, 2013, vol. 50, pp. 354–376. DOI:10.1088/0026-1394/50/4/354

10. Kytin G. A., Kytin V. G., Ghavalyan M. Yu., Aslanyan E. G., Schipunov A. N., Almanach sovremennoy metrologii, 2017, no. 12, pp. 43–64 (in Russian).


Review

For citations:


Kytin V.G., Ghavalyan M.Yu., Potapov B.G., Aslanyan E.G., Shchipunov A.N. Relative acoustic gas thermometry setup for low temperature range from 4,2 to 80 K. Izmeritel`naya Tekhnika. 2020;(1):45-51. (In Russ.) https://doi.org/10.32446/0369-1025it.2020-1-45-52

Views: 154


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)