

Interconnection of fractional indexes of dimensions of measurands and of fractal dimensions
https://doi.org/10.32446/0368-1025it.2023-5-4-9
Abstract
The possibility of the existence of an informal relationship between two concepts of dimension – the dimension of the measurand and the fractal dimension of objects, in particular, in relation to fractional values of dimension, is investigated. Measurement results with non-zero error probabilities of the fi rst and second kinds when comparing the measured value with measures can be considered as environmental impact. For quantum theory, it is impossible to reliably predict the outcome of a measurement due to the impact of a measuring instrument on an object (non-uniformly scaled), limited only by the probability of the outcome. Fractional dimensions of units of electrical and magnetic quantities are present in the GHS system of units (centimeter, gram, second). Non-integer, including fractional, fractal dimensions appear when considering the structure of complex nonlinear objects. The commonality of the two different concepts of dimension lies in the measurement procedure in both defi nitions. It is shown that the relationship between the fractional dimensions of the measured quantities and fractal dimensions is manifested as a result of the representation of the measurement process in the form of a generalized effect characterizing the interaction of objects. The results obtained can be used to expand the scope of the fractal approach in measurement practice.
About the Authors
L. K. IsaevRussian Federation
Lev K. Isaev
S. L. Chernyshev
Russian Federation
Sergey L. Chernyshev
References
1. Matematicheskii entsiklopedicheskii slovar’ / gl. red. Yu. V. Prokhorov, Moscow, Bol’shaya Rossiiskaya entsiklopediya Publ., 1995, 847 p. (In Russ.)
2. Mandelbrot B. В. Fractals: form, chance and dimension. San Francisco, W. H. Freeman, 1977, 365 p., available at: https://archive. org/details/fractalsformchan0000mand (accessed: 24.04.2023).
3. Grattan-Guinness I. Chapter 26 – Joseph Fourier, Théorie analytique de la chaleur (1822). In Landmark Writings in Western Mathematics 1640–1940, 2005, рр. 354–365. https://doi.org/10.1016/B978-044450871-3/50107-8
4. Sena L. A. Edinitsy fi zicheskikh velichin i ikh razmernosti: Ucheb.- sprav. rukovodstvo. Moscow, Nauka Publ., 1989. 430 p. (In Russ.)
5. Isaev L. K., Kalinin M. I. Reformirovaniye SI – ot artefactov k estestvennym etalonam. Zakonodatel’naya i prikladnaya metrologia, 2019, no. 1, pp. 4–5. (In Russ.)
6. Chernyshev S. L. Measurement Techniques, 2003, vol. 46, pp. 736–742. https://doi.org/10.1023/A:1026101111298
7. Chernyshev S. L., Isaev L. K., Kozlov A. D. Measurement Techniques, 2020, vol. 63, no. 8, pp. 602–609. https://doi.org/10.1007/s11018-020-01829-6
8. Litvinov B. Ya., Okrepilov M. V., Pavlov R. V. Metrology, fractals, and the economics of quality. Economics and Management, 2017, no. 1(135), pp. 58–63. (In Russ.)
9. Maxwell J. C. A treatise on electricity and magnetism. Vol. I. Oxford, The Clarendon Press, 1873, 489 p. (Russ. ed.: Maxwell J. C. Traktat ob elektrichestve i magnetizme (in 2 vols.). Vol. 1. Moscow, Nauka, 1989. 416 p.).
10. Kalinin M. I., Isaev L. K., Bulygin F. V. Measurement Techniques. 2021, vol. 63, pp. 798–805. https://doi.org/10.1007/s11018-021-01855-y
11. Filippov G. G. Teoriya razmernostey i LTM-phizika. Мoscow, КоmКniga Publ., 2007, 96 p. (In Russ.)
12. Malinetskii G. G. Zadachi po kursu nelineinoy dinamiki. Мoscow, Nauka Publ., 1996, 136 p. (In Russ.)
13. Sedov L. I. Metody podobiya I razmernosti v mekhanike. Мoscow, Nauka Publ., 1977, 438 p. (In Russ.)
14. Kononogov S. A. Metrologiya I fundamental’nye fi zicheskie constanty. Мoscow, Standartinform Publ., 2008, 272 p. (In Russ.)
15. Temnikov F. E., Afonin V. A., Dmitriyev V. I. Tereticheskiye osnovy informatsionnoy tekhniki. Мoscow, Energiya Publ., 1971, 424 p. (In Russ.)
16. Ivanova V. S., Balankin A. C., Bunin I. Zh., Oksogoyev A. A. Sinergetika I fractaly v materialovedenii. Мoscow, Nauka Publ., 1994, 383 p. (In Russ.)
17. Isaev L. K., Chernyshev S. L. Vyyavleniye vzaimosvyazi shkal, kharakterizuyushchikh kolichestvennye i kachestvennye svoystva slozhnykh ob’ektov na osnove numeratsii. Metrologiya, 2012, no. 12, pp. 3–12. (In Russ.)
18. Zel’dovich Ya. B., Sokolov D. D. Soviet Physics Uspekhi, 1985, vol. 28, no. 7, pp. 608–616. https://doi.org/10.1070/PU1985v028n07ABEH003873
19. Chernyshev S. L., Chernyshev L. S. Measurement Techniques, 2006, vol. 49, pp. 1171–1178. https://doi.org/10.1007/s11018-006-0256.8
20. Chernyshev S. L. Modelirovaniye i classifi katsiya nanostruktur. Мoscow, KRASAND Publ., 2011, 216 p. (In Russ.)
21. Chernyshev S. L., Chernyshev A. S. Measurement Techniques, 2022, vol. 65, pp. 157–165. https://doi.org/10.1007/s11018-022-02063-y
Review
For citations:
Isaev L.K., Chernyshev S.L. Interconnection of fractional indexes of dimensions of measurands and of fractal dimensions. Izmeritel`naya Tekhnika. 2023;(5):4-9. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-5-4-9