Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Estimation of the error of the results of indirect measurements of some quantities

https://doi.org/10.32446/0368-1025it.2020-1-18-24

Abstract

The basic mathematical provisions that determine the necessary and sufficient conditions for the application of the method of linearization of nonlinear functions of random arguments in the evaluation of errors of the results of indirect measurements are considered, and the need to present the assessment of the arising systematic component of the error and the degree of approximate representation of functions is noted. Within the framework of the necessary and sufficient conditions for the expansion of an arbitrary function into a Taylor series, a new analytical formula for the approximation of a nonlinear function in the form of a quotient of independent random arguments is obtained, which allows to exclude the questions of refinement of the results by adding terms to the Taylor series and estimating the degree of approximation of a nonlinear function by the values of the corresponding residual terms when evaluating the errors of indirect measurements. It is shown that the obtained new approximation for the replacement of such a function allows us to determine the practical conditions under which to estimate the errors of the corresponding results it is possible to use known, and quite simple, formulas for estimating the absolute and relative errors without preprocessing the results of direct measurements.

About the Author

E. V. Eremin
All-Russian research Institute of physical-technical and radio engineering measurements
Russian Federation

Evgenii V. Eremin

Mendeleevo, Moscow region



References

1. JCGM 200:2008 (E/F). VIM3 – International vocabulary of metrology: Basic and general concepts and associated terms.

2. Doynikov A. S., Lektsii po metrologii, Mendeleyevo, VNIIFTRI Publ., 2018 (in Russian).

3. Cramer H., Mathematical Methods of Statistics, Princeton, Princeton University Press, 1946.

4. Denisenko O. V., Dobrovol’skiy V. I., Donchenko S. I., Eremin E. V., Partnyory i konkurenty, 2002, nо. 9, pp. 32–38 (in Russian).

5. Denisenko O. V., Donchenko S. I., Eremin E. V., Measurement Techniques, 2003, vol. 46, no. 2, pp. 143–151. DOI:10.1023/A:1023601718289

6. Eremin E. V., Instruments, 2019, no. 9, pp. 46–54.

7. Venttsel’ E. S., Teoriya veroyatnostey, Moscow, Vysshaya shkola Publ., 1998 (in Russian).

8. Smirnov N. V., Dunin-Barkovskiy I. V., Kurs teorii veroyatnostey i matematicheskoy statistiki dlya tekhnicheskikh prilozheniy, Moscow, Nauka Publ., 1969 (in Russian).

9. Fikhtengol’ts G. M., Kurs diff erentsial’nogo i integral’nogo ischisleniya, in 3 vol., vol. 1, Moscow, FIZMATLIT Publ., 2003 (in Russian).

10. Selivanov M. N., Fridman A. E., Kudryashova Zh. F., Kachestvo izmereniy: Metrologicheskaya spravochnaya kniga, Leningrad, Lenizdat Publ., 1987 (in Russian).

11. Granovskiy V. A., Siraya T. N., Metody obrabotki eksperimental’nykh dannykh pri izmereniyakh, Leningrad, Energoatomizdat Publ., 1990 (in Russian).

12. Fridman A. E., Osnovy metrologii. Sovremennyy kurs, St. Peterbsburg, NPO "Professional" Publ., 2008 (in Russian).

13. Korn G. A., Korn, T. M., Mathematical handbook for scientist and engineers. Defi nitions, theorems and formulas for reference and review, New York, McGraw-Hill Book Company, 1968

14. Piskunov N. S., Diff erentsial’noye i integral’noye ischisleniya, in 2 vol., vol. 1, St. Peterbsburg, Mifril Publ., 1996 (in Russian).

15. Taylor, John R., An introduction to error analysis, California, University Science Books Mill Valley, 1982.

16. Mironov E. G., Bessonov N. P., Metrologiya i tekhnicheskiye izmereniya, Moscow, KNORUS Publ., 2015 (in Russian).

17. Rabinovich S. G., Pogreshnosti izmereniy, Leningrad, Energiya Publ., 1978 (in Russian).

18. Burdun G. D., Markov B. N., Osnovy metrologii, Moscow, Standartov Publ., 1985 (in Russian).

19. Rabinovich S. G., Measurement errors and uncertainties: theory and practice, New York, Springer-Verlag, 2005.

20. Siraya T. N., Measurement Techniques, 2018, vol. 61, no. 1, pp. 9–16. DOI:10.1007/s11018-018-1380-y

21. Gvozdev V. D., Zakonodatel’naya i prikladnaya metrologiya, 2011, no. 3, pp. 52–54 (in Russian).

22. Den’gub V. M., Smirnov V. G., Edinitsy velichin: slovar’-spravochnik, Moscow, Standartov Publ., 1990 (in Russian).

23. Chertov A. G., Fizicheskiye velichiny (terminologiya, opredeleniya, oboznacheniya, razmernosti, edinitsy), Moscow, Vysshaya shkola Publ., 1990 (in Russian).


Review

For citations:


Eremin E.V. Estimation of the error of the results of indirect measurements of some quantities. Izmeritel`naya Tekhnika. 2020;(1):18-24. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-1-18-24

Views: 282


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)