

Quantum Hall ef ect and von Klitzing constant
https://doi.org/10.32446/0368-1025it.2021-1-9-13
Abstract
The current problem in the field of electrical measurements is considered in connection with the new defi nitions of SIunits of physical quantities adopted by the 26th General Conference on Weights and Measures in November 2018 (France, Versailles), namely, the reproduction of anohm based on the quantum Hall effect. The reasons for the introduction in 1988 of the Klitzing constant independent of the international system of units and its cancellation in 2018 are explained. The physical foundations of the quantum Hall effect are outlined. The main indirect and direct experiments that led to the creation of an ohm standard based on the quantum Hall effect, including those carried out at VNIIMS in 1982–1986, are analyzed. Using the example of these experiments, the identity of the values of the quantized resistance for samples prepared on the basis of inversion layers in silicon, gallium arsenide and in samples of a fundamentally new substance graphene is shown. Results on the use of graphene to create standards based on the quantum Hall effect for various industries and science based on the latest advances in its production are presented.
About the Author
S. G. SemenchinskiyRussian Federation
Sergey G. Semenchinskiy
Moscow
References
1. 16 November 2018: Historic day for metrology. URL: https://www.bipm.org/utils/common/pdf/CGPM-2018/Presenta tion-CGPM26-Klitzing.pdf (дата обращения: 02.12.2020).
2. Quinn T. J., Metrologia, 1989, vol. 26(1), pp. 69–74. https://doi.org/10.1088/0026-1394/26/1/006
3. K. v. Klitzing, Dorda G., and Pepper M., Physical Review Letters, 1980, vol. 45, no. 6, pp. 494–497. https://doi.org/10.1103/PhysRevLett.45.494
4. Semenchinskiy S. G., Ob elektricheskikh edinitsakh SI, Zakonodatel’naya i prikladnaya metrologiya, 2019, no. 2(159), pp. 7–9 (in Russian).
5. Semenchinskiy S. G., Elelman V. S., Polevoi tranzistor i postoyannaya tonkoi struktury, Priroda, 1982, no. 9, pp. 38–41 (in Russian).
6. Pudalov V. M., Semenchinskii S. G., Journal of Experimental and Theoretical Physics, 1984, vol. 59 (4), pp. 838–846.
7. Pudalov V. M., Semenchinsky S. G., Edelman V. S., Solid State Communications, 1984, vol. 51, no. 9, pp. 713–717. https://doi.org/10.1016/0038-1098(84)90953-0
8. Semenchinskii S. G., Journal of Experimental and Theoretical Physics, 1986, vol. 91, pp. 1068–1074.
9. Eisenstein J. P., Stormer H. L., Narayanamurti V., Cho A. Y., Gossard A. C., Tu C. W., Physical Review Letters, 1985, vol. 55, no. 8, pp. 875–878. https://doi.org/10.1103/PhysRevLett.55.875
10. Hartland A., Jones K., Williams J. M., Gallagher B. L., Galloway T., Physical Review Letters, 1991, vol. 66, pp. 969–973. https://doi.org/10.1103/PhysRevLett.66.969
11. Jeckelmann B., Jeanneret B., Physical Review B, 1997, vol. 55, iss. 19, pp. 13124–13134. https://doi.org/10.1103/PhysRevB.55.13124
12. Jeckelmann B., Inglis A. D., and Jeanneret B., IEEE Transactions on Instrumentation and Measurement, April 1995, vol. 44, no. 2, pp. 269–272. https://doi.org/10.1109/19.377828
13. Novoselov K. S., Geim A. K., Dubonos S. V., Hill E. W., Grigorieva I. V., Nature, 2003, vol. 426, pp. 812–816. https://doi.org/10.1038/nature02180
14. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, vol. 306, pp. 666–669. https://doi.org/10.1126/science.1102896
15. Novoselov K. S., Jiang Z., Zhang Y., Morozov S. V., Stormer H. L., Zeitler U., Maan J. C., Boebinger G. S., Kim P., Geim A. K., Science, 2007, vol. 315, iss. 5817, p. 1379. https://doi.org/10.1126/science.1137201
16. Giesbers A. J. M., Rietveld G., Houtzager E., Zeitler U., Yang R., Novoselov K. S., Geim A. K., Maan J. C., Applied Physics Letters, 2008, vol. 93, no. 22. https://doi.org/10.1063/1.3043426
17. Tzalenchuk A., Lara-Avila S., Kalaboukhov A., Paolillo S., Syvajarvi M., Yakimova R., Kazakova O., Janssen T. J. B. M., Fal’ko V., and Kubatkin S., Nature Nanotechnology, 2010, vol. 5, pp. 186–189. https://doi.org/10.1038/nnano.2009.474
18. Janssen T. J. B. M., Fletcher N. E., Goebel R., Williams J. M., Tzalenchuk A., Yakimova R., Lara-Avila S., Kubatkin S., Fal’ko V. I., New Journal of Physics, 2011, vol. 13, 093026-6. https://doi.org/10.1088/1367-2630/13/9/093026
19. Ribeiro-Palau R., Lafont F., Brun-Picard J., Kazazis D., Michon A., Cheynis F., Couturaud O., Consejo C., Jouault B., Poirier W., Schopfer F., Nature Nanotechnology, 2015, vol. 10, pp. 965–971. https://doi.org/10.1038/nnano.2015.192
20. NIST. Fundamental Physical Constants. Von Klitzing constant, available at: https://physics.nist.gov/cgi-bin/cuu/Value?rk (accessed: 02.12.2020)
Review
For citations:
Semenchinskiy S.G. Quantum Hall ef ect and von Klitzing constant. Izmeritel`naya Tekhnika. 2021;(1):9-13. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-1-9-13