Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Quantum Hall ef ect and von Klitzing constant

https://doi.org/10.32446/0368-1025it.2021-1-9-13

Abstract

The current problem in the field of electrical measurements is considered in connection with the new defi nitions of SIunits of physical quantities adopted by the 26th General Conference on Weights and Measures in November 2018 (France, Versailles), namely, the reproduction of anohm based on the quantum Hall effect. The reasons for the introduction in 1988 of the Klitzing constant independent of the international system of units and its cancellation in 2018 are explained. The physical foundations of the quantum Hall effect are outlined. The main indirect and direct experiments that led to the creation of an ohm standard based on the quantum Hall effect, including those carried out at VNIIMS in 1982–1986, are analyzed. Using the example of these experiments, the identity of the values of the quantized resistance for samples prepared on the basis of inversion layers in silicon, gallium arsenide and in samples of a fundamentally new substance graphene is shown. Results on the use of graphene to create standards based on the quantum Hall   effect for various industries and science based on the latest advances in its production are presented.

About the Author

S. G. Semenchinskiy
Russian Research Institute for Metrological Service
Russian Federation

Sergey G. Semenchinskiy

Moscow



References

1. 16 November 2018: Historic day for metrology. URL: https://www.bipm.org/utils/common/pdf/CGPM-2018/Presenta tion-CGPM26-Klitzing.pdf (дата обращения: 02.12.2020).

2. Quinn T. J., Metrologia, 1989, vol. 26(1), pp. 69–74. https://doi.org/10.1088/0026-1394/26/1/006

3. K. v. Klitzing, Dorda G., and Pepper M., Physical Review Letters, 1980, vol. 45, no. 6, pp. 494–497. https://doi.org/10.1103/PhysRevLett.45.494

4. Semenchinskiy S. G., Ob elektricheskikh edinitsakh SI, Zakonodatel’naya i prikladnaya metrologiya, 2019, no. 2(159), pp. 7–9 (in Russian).

5. Semenchinskiy S. G., Elelman V. S., Polevoi tranzistor i postoyannaya tonkoi struktury, Priroda, 1982, no. 9, pp. 38–41 (in Russian).

6. Pudalov V. M., Semenchinskii S. G., Journal of Experimental and Theoretical Physics, 1984, vol. 59 (4), pp. 838–846.

7. Pudalov V. M., Semenchinsky S. G., Edelman V. S., Solid State Communications, 1984, vol. 51, no. 9, pp. 713–717. https://doi.org/10.1016/0038-1098(84)90953-0

8. Semenchinskii S. G., Journal of Experimental and Theoretical Physics, 1986, vol. 91, pp. 1068–1074.

9. Eisenstein J. P., Stormer H. L., Narayanamurti V., Cho A. Y., Gossard A. C., Tu C. W., Physical Review Letters, 1985, vol. 55, no. 8, pp. 875–878. https://doi.org/10.1103/PhysRevLett.55.875

10. Hartland A., Jones K., Williams J. M., Gallagher B. L., Galloway T., Physical Review Letters, 1991, vol. 66, pp. 969–973. https://doi.org/10.1103/PhysRevLett.66.969

11. Jeckelmann B., Jeanneret B., Physical Review B, 1997, vol. 55, iss. 19, pp. 13124–13134. https://doi.org/10.1103/PhysRevB.55.13124

12. Jeckelmann B., Inglis A. D., and Jeanneret B., IEEE Transactions on Instrumentation and Measurement, April 1995, vol. 44, no. 2, pp. 269–272. https://doi.org/10.1109/19.377828

13. Novoselov K. S., Geim A. K., Dubonos S. V., Hill E. W., Grigorieva I. V., Nature, 2003, vol. 426, pp. 812–816. https://doi.org/10.1038/nature02180

14. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, vol. 306, pp. 666–669. https://doi.org/10.1126/science.1102896

15. Novoselov K. S., Jiang Z., Zhang Y., Morozov S. V., Stormer H. L., Zeitler U., Maan J. C., Boebinger G. S., Kim P., Geim A. K., Science, 2007, vol. 315, iss. 5817, p. 1379. https://doi.org/10.1126/science.1137201

16. Giesbers A. J. M., Rietveld G., Houtzager E., Zeitler U., Yang R., Novoselov K. S., Geim A. K., Maan J. C., Applied Physics Letters, 2008, vol. 93, no. 22. https://doi.org/10.1063/1.3043426

17. Tzalenchuk A., Lara-Avila S., Kalaboukhov A., Paolillo S., Syvajarvi M., Yakimova R., Kazakova O., Janssen T. J. B. M., Fal’ko V., and Kubatkin S., Nature Nanotechnology, 2010, vol. 5, pp. 186–189. https://doi.org/10.1038/nnano.2009.474

18. Janssen T. J. B. M., Fletcher N. E., Goebel R., Williams J. M., Tzalenchuk A., Yakimova R., Lara-Avila S., Kubatkin S., Fal’ko V. I., New Journal of Physics, 2011, vol. 13, 093026-6. https://doi.org/10.1088/1367-2630/13/9/093026

19. Ribeiro-Palau R., Lafont F., Brun-Picard J., Kazazis D., Michon A., Cheynis F., Couturaud O., Consejo C., Jouault B., Poirier W., Schopfer F., Nature Nanotechnology, 2015, vol. 10, pp. 965–971. https://doi.org/10.1038/nnano.2015.192

20. NIST. Fundamental Physical Constants. Von Klitzing constant, available at: https://physics.nist.gov/cgi-bin/cuu/Value?rk (accessed: 02.12.2020)


Review

For citations:


Semenchinskiy S.G. Quantum Hall ef ect and von Klitzing constant. Izmeritel`naya Tekhnika. 2021;(1):9-13. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-1-9-13

Views: 161


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)