Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

National primary standard for the unit of average laser radiation power GET 28-2016

https://doi.org/10.32446/0368-1025it.2021-1-3-8

Abstract

The description of the National primary standard for the unit of average laser radiation power GET 28-2016 with a power range from 10–9 to 5·10–3 W is described. The principle of operation of a standard based on a photoelectric trap detector in the range from 10–9 to 5·10–3 W is described. As a result of metrological studies at National primary standard, it was determined that the value of the total standard uncertainty of reproduction and transmission of an average power unit for the range from 10–9 to 5·10–3 W is no more than 0.36 %. The model and theoretical characteristics of the measuring beam splitter, allowing to expand the range of the National primary standard to the range of kilowatt power levels, are presented. National primary standard allows solving the problems of metrological support of promising low-level laser ranging systems both in the ground and in the aerospace fi eld, ensuring the uniformity of measurements of radiometric parameters of low-intensity laser radiation fluxes.

About the Authors

T. V. Groppa
All-Russian Research Institute for Optical and Physical Measurements
Russian Federation

Tatiana V. Groppa

Moscow



V. S. Ivanov
All-Russian Research Institute for Optical and Physical Measurements
Russian Federation

Vyacheslav S. Ivanov

Moscow



A. A. Liberman
All-Russian Research Institute for Optical and Physical Measurements
Russian Federation

Anatoly A. Liberman

Moscow



A. S. Mikryukov
All-Russian Research Institute for Optical and Physical Measurements
Russian Federation

Aleksey S. Mikryukov

Moscow



S. A. Moskalyuk
All-Russian Research Institute for Optical and Physical Measurements
Russian Federation

Sergey A. Moskalyuk

Moscow



References

1. Kovalev A. A., Liberman A. A., Mikryukov A. S., Moskalyuk S. A., and Ulanovskii M. V., Measurement Techniques, 2016, vol. 58, no. 11, pp. 1195–1199. https://doi.org/10.1007/s11018-016-0868-6

2. Ivanov V. S., Zolotarevsky Yu. M., Kotyuk A. F., Liberman A. A., Sapritsky V. I., Stolyarevskaya R. I., Ulanovsky M. V., Chuprakov V. F., Fundamentals of Optical Radiometry, Moscow, Fizmalit Publ., 2003, 419 p. (in Russian).

3. Moskalyuk S. A., Liberman A. A., Kück S., Brandt F., Metrologia, 2012, vol. 49(1A):02001. https://doi.org/10.1088/0026-1394/49/1A/02001

4. Nosov P. A., Shirankov А. F., Tret’yakov R. S., Grigoryants А. G., Stavertiy А. Ya., Izv. vuzov. Priborostroenie, 2016, vol. 59, no. 12, pp. 1028–1033 (in Russian). https://doi.org/10.17586/0021-3454-2016-59-12-1028-1033

5. Vlasova K. V., Konovalov A. N., Makarov A. I. et al., Radiophysiсs and Quantum Electronics, 2019, vol. 62, no. 6, pp. 439–446. https://doi.org/10.1007/s11141-019-09989-4

6. Kovalev A. A., Mikryukov A. S., Moskalyuk S. A., Yankevich E. B., Measurement Techniques, 2012, vol. 55, pp. 130–136. https://doi.org/10.1007/s11018-012-9929-7


Review

For citations:


Groppa T.V., Ivanov V.S., Liberman A.A., Mikryukov A.S., Moskalyuk S.A. National primary standard for the unit of average laser radiation power GET 28-2016. Izmeritel`naya Tekhnika. 2021;(1):3-8. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-1-3-8

Views: 136


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)