Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Synthesis of standard reference materials of particle size in liquid medium based on aqueous suspensions of polystyrene latex spheres

https://doi.org/10.32446/0368-1025it.2022-12-64-68

Abstract

Comprehensive work has been carried out to develop a method for obtaining particle size standard reference materials based on aqueous suspensions of polystyrene latex spheres. For the synthesis of suspensions, a method of seed emulsion polymerization of styrene under conditions of excess dispersion medium is proposed. The equipment from the State Primary Standard of units of dispersed parameters of aerosols, suspensions and powdery materials was used in the work. The granulometric composition of the suspension samples synthesized in the work was investigated by the methods of dynamic light scattering and diffraction of laser radiation. Metrological characteristics of synthesized suspensions have been studied. It is established that, depending on the methods of emulsion polymerization and microemulsifi cation of styrene, monodisperse microspheres of polystyrene latex of various diameters can be obtained. The effect of the amount of the introduced surfactant on the process of quasi-spontaneous microemulsifi cation of the monomer during seed polymerization is investigated. According to the results of the research, aqueous suspensions of monodisperse polystyrene latex spheres with a median particle diameter of 0.31 microns and 0.54 microns were proposed as measures of particle size. The results of the research can be used to obtain monodisperse particles larger than 1 microns by seed polymerization.

About the Author

D. V. Averkin
Russian Metrological Institute of Technical Physics and Radio Engineering; Tver State University
Russian Federation

Dmitry V. Averkin

Mendeleevo, Moscow Region



References

1. Беленький Д. И., Аверкин Д. В., Вишневецкий Д. В., Хижняк С. Д., Пахомов П. М. Исследования дисперсных систем и разработка стандартных образцов дзета-потенциала частиц в жидкости // Измерительная техника. 2021. № 4. С. 58–62. https://doi.org/10.32446/0368-1025it.2021-4-58-62 [Belenkii D. I., Averkin D. V., Vishnevetskii D. V., et al., Measurement Techniques, 2021, vol. 64, no. 4, pp. 328–332. https://doi.org/10.1007/s11018-021-01936-y ]

2. Грицкова И. А., Жаченков С. В., Прокопов Н. И., Ильменев П. Е. Эмульсионная полимеризация гидрофобных мономеров в высокодисперсных эмульсиях // Высокомолекулярные соединения. 1991. Т. (А) 33. № 7. С. 1476–1483. [Gritskova I. A., Zhachenkov S. V., Prokopov N. I., Ilmenev P. E., Emulsion polymerization of hydrophobic monomers in highly dispersed emulsions, High-molecular Compounds, 1991, vol. (A) 33, no. 7, pp. 1476–1483. (In Russ.)]

3. Прокопов Н. И., Грицкова И. А. Особенности гетерофазной полимеризации стирола при образовании поверхностно-активных веществ на границе раздела фаз // Успехи химии. 2001. № 9. С. 890–900. [Prokopov N. I., Gritskova I. A., Russian Chemical Reviews, 2001, vol . 70(9), pp. 890–900. https://doi.org/10.1070/RC2001v070n09ABEH000669 ]

4. Tuncel A., Piskin E., Biomat., Art. Cells & Immob. Biotech., 1991, vol. 19, no. 1, pp. 229–253. https://doi.org/10.3109/10731199109117830

5. Brouwer W. M., Journal of Applied Polymer Science, 1989, vol. 38, pp. 1335–1346. https://doi.org/10.1002/app.1989.070380712

6. Ugelstad J., El-Aasser M. S., Vanderhoff J. W., Polymer Letters Edition, 1973, vol. 11, pp. 503–513. https://doi.org/10.1002/pol.1973.130110803

7. Paulen R., Benyahia B., Latifi M. A., Fikar M., Computer Aided Chemical Engineering, 2013, vol. 32, pp. 721–726. https://doi.org/10.1016/B978-0-444-63234-0.50121-4

8. Alexandra J. Macbeth, Zhuangsheng Lin, Julie M. Goddard, MethodsX, 2020, vol. 7, 101110. https://doi.org/10.1016/j.mex.2020.101110

9. Wang T., Shi S., Yang F., Zhou L. M., Kuroda S., J. Mater. Sci., 2010, vol. 45, рр. 3392–3395. https://doi.org/10.1007/s10853-010-4449-9

10. Fan Xinlong, Jia Xiangkun, Zhang Hepeng, Zhang Baoliang, Li Chunmei, Zhang Qiuyu, Langmuir, 2013, vol. 29, pp. 11730–11741. https://doi.org/10.1021/la402759w

11. Sudol E. D., El-Aasser M. S., Vanderhoff J. W., J. of Pol. Sci. Part A: Pol. Chem., 1986, vol. 24. pp. 3499–3513. https://doi.org/10.1002/pola.1986.080241231

12. Vanderhoff J. W., Vitkuske J. F., Bradford E. B., Alfrey Jr. T., J. of Pol. Sci., 1956, vol. 20, pp. 225–234. https://doi.org/10.1002/pol.1956.120209501

13. Thomson B., Rudin A., Lajoie G., J. of Pol. Sci. Part A: Pol. Chem., 1995, vol. 33, pp. 345–357. https://doi.org/10.1002/pola.1995.080330301

14. Uyar Tamer, El-Shafei Ahmed, Wang Xingwu, Hacaloglu Jale, Tonelli Alan, J. of Incl. Phen. and Macr. Chem., 2006, vol. 55, pp. 109–121. https://doi.org/10.1007/s10847-005-9026-5


Review

For citations:


Averkin D.V. Synthesis of standard reference materials of particle size in liquid medium based on aqueous suspensions of polystyrene latex spheres. Izmeritel`naya Tekhnika. 2022;(12):64-68. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-12-64-68

Views: 190


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)